1
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
2
|
He C, Zhou W, Jin X, Zhou H. Derepressing of STAT3 and USP7 contributes to resistance of DLBCL to EZH2 inhibition. Heliyon 2023; 9:e20650. [PMID: 37829803 PMCID: PMC10565777 DOI: 10.1016/j.heliyon.2023.e20650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Diffuse large B-cell lymphoma is the most common subtype of lymphoma, representing ∼25 % of non-Hodgkin lymphoid malignancies. EZH2 is highly expressed in Diffuse large B-cell lymphoma and ∼22 % of patients contain EZH2 mutations. EZH2 have been studied as a potential therapeutic target for a decade, but efficient inhibition of EZH2 did not robustly kill lymphoma cells. Here, we found that EZH2 mediates repression of oncogenic genes STAT3 and USP7 in Diffuse large B-cell lymphoma cells. Inhibition of EZH2 leads to upregulation of STAT3 and USP7 at both RNA and protein levels. Along with USP7 upregulation, MDM2 is upregulated and its ubiquitylation substrate, Tumor suppressor P53, is downregulated. Upregulation of STAT3 and downregulation of p53 can strength cell proliferation and prevent cells from apoptosis, which suggests resistance mechanisms by which cells survive EZH2 inhibition-induced cell death. Short-course co-inhibition of USP7 and EZH2 showed increased apoptosis and cell proliferation prevention with the concentration as low as 0.08 μM. In STAT3 and USP7 depleted cells, EZH2 inhibition shows superior efficacy of apoptosis, and in EZH2 depleted cells, USP7 inhibition also shows superior efficacy of apoptosis. Thus, our findings suggest a new precision therapy by combinational inhibition of EZH2 with STAT3 or USP7 for Diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Chenyun He
- Affililated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenbin Zhou
- East Hospital of Shaoyang Central Hospital Medical Group, Shaoyang, Hunan, China
| | - Xiaoxia Jin
- Affililated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haining Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Li MM, Awasthi S, Ghosh S, Bisht D, Coban Akdemir ZH, Sheynkman GM, Sahni N, Yi SS. Gain-of-Function Variomics and Multi-omics Network Biology for Precision Medicine. Methods Mol Biol 2023; 2660:357-372. [PMID: 37191809 PMCID: PMC10476052 DOI: 10.1007/978-1-0716-3163-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Traditionally, disease causal mutations were thought to disrupt gene function. However, it becomes more clear that many deleterious mutations could exhibit a "gain-of-function" (GOF) behavior. Systematic investigation of such mutations has been lacking and largely overlooked. Advances in next-generation sequencing have identified thousands of genomic variants that perturb the normal functions of proteins, further contributing to diverse phenotypic consequences in disease. Elucidating the functional pathways rewired by GOF mutations will be crucial for prioritizing disease-causing variants and their resultant therapeutic liabilities. In distinct cell types (with varying genotypes), precise signal transduction controls cell decision, including gene regulation and phenotypic output. When signal transduction goes awry due to GOF mutations, it would give rise to various disease types. Quantitative and molecular understanding of network perturbations by GOF mutations may provide explanations for 'missing heritability" in previous genome-wide association studies. We envision that it will be instrumental to push current paradigm toward a thorough functional and quantitative modeling of all GOF mutations and their mechanistic molecular events involved in disease development and progression. Many fundamental questions pertaining to genotype-phenotype relationships remain unresolved. For example, which GOF mutations are key for gene regulation and cellular decisions? What are the GOF mechanisms at various regulation levels? How do interaction networks undergo rewiring upon GOF mutations? Is it possible to leverage GOF mutations to reprogram signal transduction in cells, aiming to cure disease? To begin to address these questions, we will cover a wide range of topics regarding GOF disease mutations and their characterization by multi-omic networks. We highlight the fundamental function of GOF mutations and discuss the potential mechanistic effects in the context of signaling networks. We also discuss advances in bioinformatic and computational resources, which will dramatically help with studies on the functional and phenotypic consequences of GOF mutations.
Collapse
Affiliation(s)
- Mark M Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumanta Ghosh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeynep H Coban Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA.
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Immunohistochemical loss of enhancer of Zeste Homolog 2 (EZH2) protein expression correlates with EZH2 alterations and portends a worse outcome in myelodysplastic syndromes. Mod Pathol 2022; 35:1212-1219. [PMID: 35504958 DOI: 10.1038/s41379-022-01074-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
EZH2 coding mutation (EZH2MUT), resulting in loss-of-function, is an independent predictor of overall survival in MDS. EZH2 function can be altered by other mechanisms including copy number changes, and mutations in other genes and non-coding regions of EZH2. Assessment of EZH2 protein can identify alterations of EZH2 function missed by mutation assessment alone. Precise evaluation of EZH2 function and gene-protein correlation in clinical MDS cohorts is important in the context of upcoming targeted therapies aimed to restore EZH2 function. In this study, we evaluated the clinicopathologic characteristics of newly diagnosed MDS patients with EZH2MUT and correlated the findings with protein expression using immunohistochemistry. There were 40 (~6%) EZH2MUT MDS [33 men, seven women; median age 74 years (range, 55-90)]. EZH2 mutations spanned the entire coding region. Majority had dominant EZH2 clone [median VAF, 30% (1-92)], frequently co-occurring with co-dominant TET2 (38%) and sub-clonal ASXL1 (55%) and RUNX1 (43%) mutations. EZH2MUT MDS showed frequent loss-of-expression compared to EZH2WT (69% vs. 27%, p = 0.001). Interestingly, NINE (23%) EZH2WT MDS also showed loss-of-expression. EZH2MUT and loss-of-expression significantly associated with male predominance and chr(7) loss. Further, only EZH2 loss-of-expression patients showed significantly lower platelet counts, a trend for higher BM blast% and R-IPSS scores. Over a 14-month median follow-up, both EZH2MUT (p = 0.027) and loss-of-expression (p = 0.0063) correlated with poor survival, independent of R-IPSS, age and gender. When analyzed together, loss-of-expression showed a stronger correlation than mutation (p = 0.061 vs. p = 0.43). In conclusion, immunohistochemical assessment of EZH2 protein, alongside mutation, is important for prognostic workup of MDS.
Collapse
|
5
|
Prognostic Value of Histone Modifying Enzyme EZH2 in RCHOP-Treated Diffuse Large B-Cell Lymphoma and High Grade B-Cell Lymphoma. J Pers Med 2021; 11:jpm11121384. [PMID: 34945856 PMCID: PMC8703891 DOI: 10.3390/jpm11121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Background: DLBCL represent a heterogeneous group of aggressive diseases. High grade B-cell lymphomas (HGBCL) were recently individualized from DLBCL as a discrete diagnostic entity due to their worse prognosis. Currently, although most patients are successfully treated with RCHOP regimens, 1/3 will either not respond or ultimately relapse. Alterations in histone modifying enzymes have emerged as the most common alterations in DLBCL, but their role as prognostic biomarkers is controversial. We aimed to ascertain the prognostic value of EZH2 immunoexpression in RCHOP-treated DLBCL and HGBCL. Results: We performed a retrospective cohort study including 125 patients with RCHOP-treated DLBCL or HGBCL. EZH2 expression levels did not differ between diagnostic groups or between DLBCL-NOS molecular groups. We found no associations between EZH2 expression levels and outcome, including in the subgroup analysis (GC versus non-GC). Nonetheless, EZH2/BCL2 co-expression was significantly associated with worse outcome (event free survival and overall survival). Conclusion: Although EZH2 mutations are almost exclusively found in GC-DLBCL, we found similar EZH2 expression levels in both DLBCL-NOS molecular groups, suggesting non-mutational mechanisms of EZH2 deregulation. These findings suggest that the use of EZH2 antagonists might be extended to non-GC DLBCL patients with clinical benefit. EZH2/BCL2 co-expression was associated with a worse outcome.
Collapse
|
6
|
Barıs IC, Hacıoglu S, Turk NS, Cetın GO, Zencır S, Bagcı G, Caner V. Expression and DNA methylation profiles of EZH2-target genes in plasma exosomes and matched primary tumor tissues of the patients with diffuse large B-cell lymphoma. Clin Transl Oncol 2020; 23:1152-1166. [PMID: 33226554 DOI: 10.1007/s12094-020-02504-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022]
Abstract
AIMS Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoma. This study was designed to compare epigenetic alterations observed in Enhancer of Zeste Homolog 2 (EZH2)-target genes between plasma-derived exosomes and primary tumors in DLBCL patients. MAIN METHODS Exosomes were isolated from plasma of 21 DLBCL patients and 21 controls. We analyzed the methylation status of the target genes using methylation-specific PCR. We also examined whether the exosomes and the tumor samples contained transcripts of the target genes. KEY FINDINGS We found that CDKN2A and CDKN2B were methylated in both plasma exosomes and primary tumor tissue samples. None of the transcripts were found in the exosomes except CDKN1B which was expressed in 8 (38%) of the exosome samples. SIGNIFICANCE This study showed that plasma exosomes might preferably package certain target molecules from primary tumors and the exosomes containing dual methylated DNAs of CDKN2A and CDKN2B, or CDKN1B transcript may contribute to DLBCL pathogenesis.
Collapse
Affiliation(s)
- I C Barıs
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Hacıoglu
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N S Turk
- Department of Medical Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - G O Cetın
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Zencır
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.,Department of Molecular Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - G Bagcı
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - V Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
7
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2020; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
8
|
Neves Filho EH, Hirth CG, Frederico IA, Burbano RM, Carneiro T, Rabenhorst SH. EZH2 expression is dependent on MYC and TP53 regulation in diffuse large B-cell lymphoma. APMIS 2020; 128:308-315. [PMID: 31991488 DOI: 10.1111/apm.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
EZH2 is an important epigenetic regulator, but its role in diffuse large B-cell lymphoma (DLBCL) pathogenesis and its relationship with MYC, BCL2, and TP53 expression, chromosomal rearrangements, and clinical features are still poorly understood. So, we investigated EZH2 expression and its associations with the immunophenotypic presentations, including MYC, BCL2, and TP53 expression, MYC, BCL2, and BCL6 translocation status, clinicopathological features, and therapeutic response to R-CHOP in a series of 139 DLBCL cases. EZH2 positivity was associated with MYC and TP53 expression (p = 0.0002 and p = 0.0000, respectively) and to high proliferative index (Ki67>70%, p = 0.0082). No associations were found among EZH2 expression and chromosomal translocation status. The non-germinal center (nGC) DLBCL presented most of associations observed in the general sample; however, only TP53 immunodetection showed associations with EZH2 expression in the germinal center (GC) DLBCL. EZH2 expression had no impact on therapeutic efficacy in R-CHOP-treated patients. In conclusion, EZH2 seems to be upregulated by MYC, to rely on TP53 alterations, and is associated with high proliferative tumors in DLBCL, which might be dependent on GC or nGC subclassifications. Furthermore, it is not a therapeutic efficacy marker to R-CHOP in our series.
Collapse
Affiliation(s)
| | | | - Igor Allen Frederico
- LABGEM, Departamento de Patologia e Medicina Legal, Universidade Federal Do Ceará, Fortaleza, Brazil
| | | | | | - Silvia Helena Rabenhorst
- LABGEM, Departamento de Patologia e Medicina Legal, Universidade Federal Do Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Deng Y, Chen X, Huang C, Chen G, Chen F, Lu J, Shi X, He C, Zeng Z, Qiu Y, Chen J, Lin R, Chen Y, Chen J. EZH2/Bcl-2 Coexpression Predicts Worse Survival in Diffuse Large B-cell Lymphomas and Demonstrates Poor Efficacy to Rituximab in Localized Lesions. J Cancer 2019; 10:2006-2017. [PMID: 31205561 PMCID: PMC6548167 DOI: 10.7150/jca.29807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/20/2019] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) and Bcl-2 gene rearrangement or protein upregulation played pivotal roles in the carcinogenesis of various malignancies including lymphomas. However, EZH2/Bcl-2 expression pattern and its clinicopathologic/prognostic significance in diffuse large B-cell lymphoma (DLBCL) remain unclear. To identify the association among EZH2, Bcl-2, clinicopathologic parametres in DLBCL, 2 DLBCL patient sets (test cohort, n=85; validation cohort n=51) and DLBCL cell lines were studied by tumor tissue microarray (TMA), immunohistochemistry and western blot. The optimal cut-off of EZH2 was determined by X-tile program from test cohort, as was verified in validation cohort. The prognostic significance was determined via Kaplan-Meier survival estimates and log-rank tests. Consequently, EZH2 and Bcl-2 expression were both enhanced and positively correlated with each other (𝑃=0.001) in both DLBCL patients and cell lines. EZH2/Bcl-2 coexpression was associated with poor overall survival (OS) and progression-free survival (PFS) in all DLBCL patients (all P<0.05). Univariate analyses revealed that EZH2/Bcl-2 coexpression correlated to worse objective response rate (ORR), shorter OS and PFS in DLBCL patients treated with RCHOP while multivariate analysis indicated that only elevated LDH level (P=0.001) and presence of B symtom (P=0.008) rather than EZH2/Bcl-2 coexpression were associated with worse OS. No survival benefit from rituximab regimen had been demonstrated in the early-staged DLBCL patients with EZH2/Bcl-2 coexpression. While in the subgroup of III-IV stage, RCHOP regimen showed obvious better OS and PFS than CHOP (P=0.039 and 0.005). In conclusion, EZH2/Bcl-2 coexpression defines unrecognized subgroup of DLBCL patients with distinct epigenetic phenotype and worse outcome.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Fangfang Chen
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jianping Lu
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xi Shi
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Cheng He
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhiyong Zeng
- Department of Hematology and Rheumatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanhua Qiu
- Department of Medical Imaging, Grade 2014, Fujian Medical University, Fuzhou, China
| | - Junqiang Chen
- Department of Thoracic Radiotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Rongbo Lin
- Department of Gastrointestinal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yanping Chen
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Junmin Chen
- Department of Hematology and Rheumatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Han M, Jia L, Lv W, Wang L, Cui W. Epigenetic Enzyme Mutations: Role in Tumorigenesis and Molecular Inhibitors. Front Oncol 2019; 9:194. [PMID: 30984620 PMCID: PMC6449417 DOI: 10.3389/fonc.2019.00194] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation and histone modification, result in heritable changes in gene expression without changing the DNA sequence. Epigenetic regulatory enzymes such as DNA methyltransferases, histone methyltransferases, and histone deacetylases are involved in epigenetic modification. Studies have shown that the dysregulation caused by changes in the amino acid sequence of these enzymes is closely correlated with tumor onset and progression. In addition, certain amino acid changes in the metabolic enzyme isocitrate dehydrogenase (IDH) are linked to altered epigenetic modifications in tumors. Some small molecule inhibitors targeting these aberrant enzymes have shown promising anti-cancer efficacy in preclinical and clinical trials. For example, the small molecule inhibitor ivosidenib, which targets IDH1 with a mutation at R132, has been approved by the FDA for the clinical treatment of acute myeloid leukemia. In this review, we summarize the recurrent “hotspot” mutations in these enzymes in various tumors and their role in tumorigenesis. We also describe candidate inhibitors of the mutant enzymes which show potential therapeutic value. In addition, we introduce some previously unreported mutation sites in these enzymes, which may be related to tumor development and provide opportunities for future study.
Collapse
Affiliation(s)
- Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wencai Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Tremblay-LeMay R, Rastgoo N, Pourabdollah M, Chang H. EZH2 as a therapeutic target for multiple myeloma and other haematological malignancies. Biomark Res 2018; 6:34. [PMID: 30555699 PMCID: PMC6286605 DOI: 10.1186/s40364-018-0148-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is of great interest in human cancer. It has been shown to have a dual nature, as it can act as a gene repressor or activator. Studies have highlighted the various roles of EZH2 in the pathophysiology of multiple myeloma (MM). It was also shown to have a role in the development of drug resistance in MM. There are several ongoing clinical trials of EZH2 inhibitors in haematological malignancies. Pre-clinical studies have provided a rationale for the therapeutic relevance of EZH2 inhibitors in MM. This paper reviews the evidence supporting the role of EZH2 in MM pathophysiology and drug resistance, with an emphasis on interactions between EZH2 and microRNAs, as well as the prognostic significance of EZH2 expression in MM. Furthermore, results from the pre-clinical studies of EZH2 inhibition in MM and currently available interim results from clinical trials of EZH2 inhibitors in haematological malignancies are presented. Preliminary data exploring anticipated mechanisms of resistance to EZH2 inhibitors are also reviewed. There is therefore strong evidence to support the relevance of targeting EZH2 for the treatment of MM.
Collapse
Affiliation(s)
- Rosemarie Tremblay-LeMay
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada
| | - Nasrin Rastgoo
- 2Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
| | - Maryam Pourabdollah
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada
| | - Hong Chang
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada.,2Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada.,3Department of Talent Highland, First Affiliated Hospital of Xi'an Jiao Tong University, Xian, China
| |
Collapse
|
12
|
Concomitant 1p36 deletion and TNFRSF14 mutations in primary cutaneous follicle center lymphoma frequently expressing high levels of EZH2 protein. Virchows Arch 2018; 473:453-462. [DOI: 10.1007/s00428-018-2384-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
|
13
|
Zhu K, Deng Y, Weng G, Hu D, Huang C, Matsumoto K, Nagayasu T, Koji T, Zheng X, Jiang W, Lin G, Cai Y, Weng G, Chen X. Analysis of H3K27me3 expression and DNA methylation at CCGG sites in smoking and non-smoking patients with non-small cell lung cancer and their clinical significance. Oncol Lett 2018; 15:6179-6188. [PMID: 29616099 PMCID: PMC5876441 DOI: 10.3892/ol.2018.8100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Smoking frequently leads to epigenetic alterations, including DNA methylation and histone modifications. The effect that smoking has on the DNA methylation levels at CCGG sites, the expression of trimethylation of histone H3 at lysine 27 (H3K27me3) and enhancer of zeste homolog 2 (EZH2), and their interactions in patients with non-small cell lung cancer (NSCLC) were analyzed. There were a total of 42 patients with NSCLC, 22 with adenocarcinomas and 20 with squamous cell carcinomas enrolled in the present study. Expression of H3K27me3, EZH2 and proliferating cellular nuclear antigen (PCNA) were immunohistochemically detected. DNA methylation at CCGG sites was evaluated via histoendonuclease-linked detection of DNA methylation sites. The apoptotic index of cancerous tissues obtained from patients of different smoking statuses was evaluated via the terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling method. The association with clinicopathological data was calculated relative to different smoking statuses. Compared with the non-smokers, smokers with NSCLC exhibited a significantly lower apoptotic index (P<0.05), and frequently had a lower level of DNA methylation at CCGG sites, lower H3K27me3 expression and a higher EZH2 expression (P<0.05). DNA methylation levels at CCGG sites were negatively correlated to the Brinkman index (P=0.017). Furthermore, there was a parallel association between the H3K27me3 and EZH2 expression levels in the majority of smokers, whereas in the majority of non-smokers, there was a diverging association (P=0.015). There was a diverging association between the PCNA and EZH2 expression levels in the majority of smokers; however, in the majority of non-smokers, there was a parallel association (P=0.048). In addition, the association between the CCGG methylation ratio and immunohistochemical expression of H3K27me3 was a parallel association in the majority of smokers, while in the majority of non-smokers there was a diverging association (P=0.049). Conclusively, patients with NSCLC and different smoking statuses exhibit different epigenetic characteristics. Additionally, DNA methylation levels at the CCGG sites may have the ability to determine associations between the expression levels of H3K27me3, EZH2 and PCNA.
Collapse
Affiliation(s)
- Kunshou Zhu
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yujie Deng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guoxing Weng
- Department of Cardiac Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Cheng Huang
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Nagasaki 852-8501, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Nagasaki 852-8501, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| | - Xiongwei Zheng
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Wenhui Jiang
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Yibin Cai
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Guibin Weng
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiaohui Chen
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
14
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
15
|
Gao J, Behdad A, Ji P, Wolniak KL, Frankfurt O, Chen YH. EBV-negative aggressive NK-cell leukemia/lymphoma: a clinical and pathological study from a single institution. Mod Pathol 2017; 30:1100-1115. [PMID: 28548121 DOI: 10.1038/modpathol.2017.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/12/2023]
Abstract
Aggressive natural killer (NK)-cell leukemia/lymphoma is a systemic NK-cell neoplasm that preferentially affects Asians with a fulminant clinical course and is almost always associated with Epstein-Barr virus (EBV). The data on EBV-negative aggressive NK-cell leukemia/lymphoma are limited. Here we report a series of three patients (two Caucasians, one African-American) with EBV-negative aggressive NK-cell leukemia/lymphoma from a single institution, including a case diagnosed on post-mortem examination. Similar to EBV-positive aggressive NK-cell leukemia/lymphoma, our patients presented with constitutional symptoms and hepatosplenomegaly, and followed a highly aggressive clinical course. The disease involved peripheral blood, bone marrow, liver, spleen, and lymph node, and the neoplastic cells were pleomorphic with prominent azurophilic granules and demonstrated an atypical NK-cell phenotype. Lack of blood lymphocytosis (3 of 3), bone marrow interstitial infiltration (2 of 3), EBER negativity (3 of 3), and atypical phenotype including CD3 negativity by immunohistochemistry make an early recognition of the disease difficult. Ancillary studies revealed a complex karyotype (1 of 2), overexpression (3 of 3), and amplification (1 of 1) of c-MYC. The polycomb repressive complex 2 pathway-associated proteins EZH2 and H3K27me3 and immune checkpoint protein PD-L1 were overexpressed in three of three and two of three cases, respectively. Our findings indicate that the EBV-negative aggressive NK-cell leukemia/lymphoma shares similar clinicopathological features to the EBV-positive counterpart except for the high prevalence of Asian seen in EBV-positive cases. Overexpression of polycomb repressive complex 2 pathway-associated proteins and PD-L1 suggest potential therapeutic targets for this aggressive disease. Next-generation sequencing on two of three cases identified multiple genetic alterations but were negative for JAK-STAT pathway-associated gene mutations previously reported in EBV-positive NK/T-cell lymphoma, suggesting alternative molecular pathogenic mechanisms for EBV-negative aggressive NK-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Juehua Gao
- Division of Hematopathology, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amir Behdad
- Division of Hematopathology, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Ji
- Division of Hematopathology, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristy L Wolniak
- Division of Hematopathology, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Olga Frankfurt
- Division of Hematology-Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi-Hua Chen
- Division of Hematopathology, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
16
|
EZH2 overexpression in primary gastrointestinal diffuse large B-cell lymphoma and its association with the clinicopathological features. Hum Pathol 2017; 64:213-221. [PMID: 28438623 DOI: 10.1016/j.humpath.2017.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022]
Abstract
Gastrointestinal diffuse large B-cell lymphoma (GI DLBCL) is the most common gastrointestinal lymphoma. Enhancer of zeste homolog 2 (EZH2) has been implicated in the pathogenesis of several cancers. However, EZH2 has not been studied in GI DLBCL. Thus, we investigated EZH2 expression and EZH2 Y641 mutation in 100 GI DLBCL specimens by immunohistochemistry and sequencing. In addition, trimethylated H3K27 (H3K27me3), BCL2, c-MYC, and Ki-67 expression and Helicobacter pylori infection were detected, and BCL2 and c-MYC gene translocation was assessed. EZH2 was overexpressed in 50% of cases. EZH2 overexpression was significantly associated with higher stage (P = .014), higher International Prognostic Index score (P = .003), reduced overall survival rate (P = .030), and H3K27me3 (P = .001) and c-MYC expression (P = .008). We detected EZH2 mutations in 1 of 33 (3.0%) DLBCLs with a germinal center immunophenotype. The frequency of EZH2 Y641 mutation in GI DLBCL was significantly lower than that in patients with DLBCL without gastrointestinal features (P = .022). BCL2 and c-MYC translocation was detected in 6.5% and 5.1% of cases, respectively. BCL2 translocation was detected exclusively in the germinal center B-cell-like subtype. Chronic gastroenteritis was present in all cases, and 36.4% of gastric DLBCL cases had H pylori infection. The data indicate that primary GI DLBCL is closely related with chronic inflammation and has a low frequency of molecular abnormality, and EZH2 overexpression is significantly associated with inferior outcome in patients with primary GI DLBCL; evaluating EZH2 expression has therapeutic implications.
Collapse
|
17
|
EZH2 alterations in follicular lymphoma: biological and clinical correlations. Blood Cancer J 2017; 7:e555. [PMID: 28430172 PMCID: PMC5436075 DOI: 10.1038/bcj.2017.32] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
The histone methyltransferase EZH2 has an essential role in the development of follicular lymphoma (FL). Recurrent gain-of-function mutations in EZH2 have been described in 25% of FL patients and induce aberrant methylation of histone H3 lysine 27 (H3K27). We evaluated the role of EZH2 genomic gains in FL biology. Using RNA sequencing, Sanger sequencing and SNP-arrays, the mutation status, copy-number and gene-expression profiles of EZH2 were assessed in a cohort of 159 FL patients from the PRIMA trial. Immunohistochemical (IHC) EZH2 expression (n=55) and H3K27 methylation (n=63) profiles were also evaluated. In total, 37% of patients (59/159) harbored an alteration in the EZH2 gene (mutation n=46, gain n=23). Both types of alterations were associated with highly similar transcriptional changes, with increased proliferation programs. An H3K27me3/me2 IHC score fully distinguished mutated from wild-type samples, showing its applicability as surrogate for EZH2 mutation analysis. However, this score did not predict the presence of gains at the EZH2 locus. The presence of an EZH2 genetic alteration was an independent factor associated with a longer progression-free survival (hazard ratio 0.58, 95% confidence interval 0.36–0.93, P=0.025). We propose that the copy-number status of EZH2 should also be considered when evaluating patient stratification and selecting patients for EZH2 inhibitor-targeted therapies.
Collapse
|
18
|
Overexpression of EZH2 in multiple myeloma is associated with poor prognosis and dysregulation of cell cycle control. Blood Cancer J 2017; 7:e549. [PMID: 28362441 PMCID: PMC5380911 DOI: 10.1038/bcj.2017.27] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/23/2017] [Indexed: 12/31/2022] Open
Abstract
Myeloma is heterogeneous at the molecular level with subgroups of patients characterised by features of epigenetic dysregulation. Outcomes for myeloma patients have improved over the past few decades except for molecularly defined high-risk patients who continue to do badly. Novel therapeutic approaches are, therefore, required. A growing number of epigenetic inhibitors are now available including EZH2 inhibitors that are in early-stage clinical trials for treatment of haematological and other cancers with EZH2 mutations or in which overexpression has been correlated with poor outcomes. For the first time, we have identified and validated a robust and independent deleterious effect of high EZH2 expression on outcomes in myeloma patients. Using two chemically distinct small-molecule inhibitors, we demonstrate a reduction in myeloma cell proliferation with EZH2 inhibition, which leads to cell cycle arrest followed by apoptosis. This is mediated via upregulation of cyclin-dependent kinase inhibitors associated with removal of the inhibitory H3K27me3 mark at their gene loci. Our results suggest that EZH2 inhibition may be a potential therapeutic strategy for the treatment of myeloma and should be investigated in clinical studies.
Collapse
|
19
|
Abstract
Activation of oncogenes or the deactivation of tumor suppressor genes has long been established as the fundamental mechanism leading towards carcinogenesis. Although this age old axiom is vastly accurate, thorough study over the last 15years has given us unprecedented information on the involvement of epigenetic in cancer. Various biochemical pathways that are essential towards tumorigenesis are regulated by the epigenetic phenomenons like remodeling of nucleosome by histone modifications, DNA methylation and miRNA mediated targeting of various genes. Moreover the presence of mutations in the genes controlling the epigenetic players has further strengthened the association of epigenetics in cancer. This merger has opened up newer avenues for targeted anti-cancer drug therapy with numerous pharmaceutical industries focusing on expanding their research and development pipeline with epigenetic drugs. The information provided here elaborates the elementary phenomena of the various epigenetic regulators and discusses their alteration associated with the development of cancer. We also highlight the recent developments in epigenetic drugs combining preclinical and clinical data to signify this evolving field in cancer research.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
20
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the commonest aggressive non-Hodgkin lymphoma with approximately 5,000 cases annually in the UK. The R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone) regimen has become the international standard of care with cure rates of around 75% and despite extensive studies aimed at improving the outcomes, R-CHOP has not been superseded. Those patients that do not respond to R-CHOP have a poor outlook. DLBCL is a disease with marked molecular heterogeneity; advances in gene expression profiling and mutational analysis can be used to increase our understanding of the disease and identify new therapeutic targets. Precision medicine using new agents, including small molecule inhibitors, is now being investigated for DLBCL. Progress in this disease is likely to come by targeting heterogeneous subtypes through novel combinations. Where R-CHOP fails, we hope that these new approaches can succeed by providing personalised medicine using precision diagnostics to guide new treatment paradigms.
Collapse
|
21
|
Jiang FZ, He YY, Wang HH, Zhang HL, Zhang J, Yan XF, Wang XJ, Che Q, Ke JQ, Chen Z, Tong H, Zhang YL, Wang FY, Li YR, Wan XP. Mutant p53 induces EZH2 expression and promotes epithelial-mesenchymal transition by disrupting p68-Drosha complex assembly and attenuating miR-26a processing. Oncotarget 2016; 6:44660-74. [PMID: 26587974 PMCID: PMC4792583 DOI: 10.18632/oncotarget.6350] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/14/2015] [Indexed: 01/22/2023] Open
Abstract
The tumor suppressor p53 and the transcriptional repressor Enhancer of Zeste Homolog 2 (EZH2) have both been implicated in the regulation of epithelial-mesenchymal transition (EMT) and tumor metastasis via their impacts on microRNA expression. Here, we report that mutant p53 (mutp53) promotes EMT in endometrial carcinoma (EC) by disrupting p68-Drosha complex assembly. Overexpression of mutp53 has the opposite effect of wild-type p53 (WTp53), repressing miR-26a expression by reducing pri-miR-26a-1 processing in p53-null EC cells. Re-expression of miR-26a in mutp53 EC cells decreases cell invasion and promotes mesenchymal-epithelial transition (MET). Rescuing miR-26a expression also inhibits EZH2, N-cadherin, Vimentin, and Snail expression and induces E-cadherin expression both in vitro and in vivo. Moreover, patients with higher serum miR-26a levels have a better survival rate. These results suggest that p53 gain-of-function mutations accelerate EC tumor progression and metastasis by interfering with Drosha and p68 binding and pri-miR-26a-1 processing, resulting in reduced miR-26a expression and EZH2 overexpression.
Collapse
Affiliation(s)
- Fei-Zhou Jiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Hui Wang
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated International Peace Maternity & Child Health Hospital of The China Welfare Institute, Shanghai, China
| | - Hui-Lin Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated International Peace Maternity & Child Health Hospital of The China Welfare Institute, Shanghai, China
| | - Xiao-Fang Yan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Qi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Tong
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Li Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Yuan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ran Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Guo S, Bai Q, Rohr J, Wang Y, Liu Y, Zeng K, Yu K, Zhang X, Wang Z. Clinicopathological features of primary diffuse large B-cell lymphoma of the central nervous system - strong EZH2 expression implying diagnostic and therapeutic implication. APMIS 2016; 124:1054-1062. [PMID: 27807891 DOI: 10.1111/apm.12623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/27/2016] [Accepted: 08/26/2016] [Indexed: 11/29/2022]
Abstract
Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a rare entity which is difficult to diagnose and treat. The histone methyltransferase EZH2 was reported to be involved in the tumorigenesis of systemic DLBCL but has not been implicated in primary CNS DLBCL. The clinicopathological features of 33 cases of primary CNS DLBCL and expression of EZH2 and Y641 mutation were assessed. The tumor cells of the majority cases resembled centroblasts, and intriguingly, three cases of rare anaplastic variant were observed. Immunophenotypically, 25/33 (75.8%) cases were non-germinal center B-cell-like type. Several cases (10/33; 30.3%) co-expressed BCL2 and MYC, 6/33 (18.2%) expressed both BCL6 and MYC, and 5/33 (15.2%) expressed BCL2, BCL6, and MYC. MYC expression alone and BCL2/MYC co-expression were associated with poor prognosis. EZH2 was strongly expressed in all 33 cases independent of Y641 mutation and was significantly associated with the tumor proliferative index Ki67. However, no association was found between the level of EZH2 expression and outcomes of patients. In summary, the clinicopathological features including three rare anaplastic variant of primary CNS DLBCL are described. Strong expression of EZH2 in all the primary CNS DLBCL and association with high proliferative index provides further information for treatment and diagnosis of this distinctive entity.
Collapse
Affiliation(s)
- Shuangping Guo
- State Key Laboratory of Tumor Biology, Department of Pathology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Qingxian Bai
- Department of Hematology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Joseph Rohr
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yingmei Wang
- State Key Laboratory of Tumor Biology, Department of Pathology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Yang Liu
- State Key Laboratory of Tumor Biology, Department of Pathology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Kaixuan Zeng
- State Key Laboratory of Tumor Biology, Department of Pathology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Kangjie Yu
- Student Team 1, Class 3, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Xiumin Zhang
- State Key Laboratory of Tumor Biology, Department of Pathology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Zhe Wang
- State Key Laboratory of Tumor Biology, Department of Pathology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| |
Collapse
|
23
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with considerable heterogeneity reflected in the 2008 World Health Organization classification. In recent years, genome-wide assessment of genetic and epigenetic alterations has shed light upon distinct molecular subsets linked to dysregulation of specific genes or pathways. Besides fostering our knowledge regarding the molecular complexity of DLBCL types, these studies have unraveled previously unappreciated genetic lesions, which may be exploited for prognostic and therapeutic purposes. Following the last World Health Organization classification, we have witnessed the emergence of new variants of specific DLBCL entities, such as CD30 DLBCL, human immunodeficiency virus-related and age-related variants of plasmablastic lymphoma, and EBV DLBCL arising in young patients. In this review, we will present an update on the clinical, pathologic, and molecular features of DLBCL incorporating recently gained information with respect to their pathobiology and prognosis. We will emphasize the distinctive features of newly described or emerging variants and highlight advances in our understanding of entities presenting a diagnostic challenge, such as T-cell/histiocyte-rich large B-cell lmphoma and unclassifiable large B-cell lymphomas. Furthermore, we will discuss recent advances in the genomic characterization of DLBCL, as they may relate to prognostication and tailored therapeutic intervention. The information presented in this review derives from English language publications appearing in PubMed throughout December 2015. For a complete outline of this paper, please visit: http://links.lww.com/PAP/A12.
Collapse
|
24
|
Nichol JN, Dupéré-Richer D, Ezponda T, Licht JD, Miller WH. H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer. Adv Cancer Res 2016; 131:59-95. [PMID: 27451124 PMCID: PMC5325795 DOI: 10.1016/bs.acr.2016.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epigenetics, the modification of chromatin without changing the DNA sequence itself, determines whether a gene is expressed, and how much of a gene is expressed. Methylation of lysine 27 on histone 3 (H3K27me), a modification usually associated with gene repression, has established roles in regulating the expression of genes involved in lineage commitment and differentiation. Not surprisingly, alterations in the homeostasis of this critical mark have emerged as a recurrent theme in the pathogenesis of many cancers. Perturbations in the distribution or levels of H3K27me occur due to deregulation at all levels of the process, either by mutation in the histone itself, or changes in the activity of the writers, erasers, or readers of this mark. Additionally, as no single histone mark alone determines the overall transcriptional readiness of a chromatin region, deregulation of other chromatin marks can also have dramatic consequences. Finally, the significance of mutations altering H3K27me is highlighted by the poor clinical outcome of patients whose tumors harbor such lesions. Current therapeutic approaches targeting aberrant H3K27 methylation remain to be proven useful in the clinic. Understanding the biological consequences and gene expression pathways affected by aberrant H3K27 methylation may lead to identification of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- J N Nichol
- Segal Cancer Centre and Lady Davis Institute, Jewish General Hospital, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - D Dupéré-Richer
- Division of Hematology Oncology, The University of Florida Health Cancer Center, Gainesville, FL, United States
| | - T Ezponda
- Division of Hematology/Oncology, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, Pamplona, Spain
| | - J D Licht
- Division of Hematology Oncology, The University of Florida Health Cancer Center, Gainesville, FL, United States
| | - W H Miller
- Segal Cancer Centre and Lady Davis Institute, Jewish General Hospital, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Duncan VE, Ping Z, Varambally S, Peker D. Loss of RUNX3 expression is an independent adverse prognostic factor in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 58:179-184. [DOI: 10.1080/10428194.2016.1180686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|