1
|
Zheng R, Li M, Wang S, Liu Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2020; 9:31. [PMID: 33292596 PMCID: PMC7664086 DOI: 10.1186/s40164-020-00187-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the hematological malignancies. With the applications of chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the cure rate of T-ALL has been significantly improved. However, patients with relapsed and refractory T-ALL still lack effective treatment options. Gene mutations play an important role in T-ALL. The NOTCH1 gene mutation is the important one among these genetic mutations. Since the mutation of NOTCH1 gene is considered as a driving oncogene in T-ALL, targeting the NOTCH1 signaling patheway may be an effective option to overcome relapsed and refractory T-ALL. This review mainly summarizes the recent research advances of targeting on NOTCH1 signaling pathway in T-ALL.
Collapse
Affiliation(s)
- Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Menglin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Zhou W, Tan W, Huang X, Yu HG. Doxorubicin combined with Notch1-targeting siRNA for the treatment of gastric cancer. Oncol Lett 2018; 16:2805-2812. [PMID: 30127866 PMCID: PMC6096196 DOI: 10.3892/ol.2018.9039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Notch1, a transmembrane receptor that has a notable role in gastric cancer (GC) as an oncogene, has been reported to be involved in doxorubicin resistance. Thus, Notch1 is a potential therapeutic target for GC. In the present study, the protein levels of Notch1 intracellular domain (NICD; a marker of Notch1 activation) in human GC cell lines and tumor tissues was measured by western blotting. Next, the effects of Notch1 depletion in SGC7901 cells were evaluated. Finally, the efficacy of Notch1 small interfering RNA (siRNA) combined with doxorubicin therapy for GC was examined in vitro and in vivo. The results revealed that NICD levels were high in GC cells, and that the inhibition of NICD by transfection with Notch1 siRNA induced apoptosis and inhibited proliferation. Ectopic downregulation of Notch1 expression enhanced the sensitivity of GC tumors to doxorubicin, which suppressed the development of GC. These data demonstrated that Notch1 was a significant regulator of cell proliferation and apoptosis in GC. Thus, the combination of doxorubicin with Notch1 siRNA is a potential strategy for the treatment of GC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
3
|
Colomer-Lahiguera S, Pisecker M, König M, Nebral K, Pickl WF, Kauer MO, Haas OA, Ullmann R, Attarbaschi A, Dworzak MN, Strehl S. MEF2C-dysregulated pediatric T-cell acute lymphoblastic leukemia is associated with CDKN1B deletions and a poor response to glucocorticoid therapy. Leuk Lymphoma 2017; 58:2895-2904. [PMID: 28482719 DOI: 10.1080/10428194.2017.1312383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease in which multiple genetic abnormalities cooperate in the malignant transformation of T-lymphoid progenitors. Although in pediatric T-ALL, CDKN1B deletions occur in about 12% of the cases and represent one of the most frequent copy number alterations, neither their association with other genetic alterations nor the clinical characteristics of these patients have been determined yet. In this study, we show that loss of CDKN1B increased the prevalence of cell cycle regulator defects in immature T-ALL, usually only ascribed to CDKN2A/B deletions, and that CDKN1B deletions frequently coincide with expression of MEF2C, considered as one of the driving oncogenes in immature early T-cell precursor (ETP) ALL. However, MEF2C-dysregulation was only partially associated with the immunophenotypic characteristics used to define ETP-ALL. Furthermore, MEF2C expression levels were significantly associated with or may even be predictive of the response to glucocorticoid treatment.
Collapse
Affiliation(s)
- Sara Colomer-Lahiguera
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Markus Pisecker
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Margit König
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Karin Nebral
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Winfried F Pickl
- b Institute of Immunology , Medical University of Vienna , Vienna , Austria
| | - Maximilian O Kauer
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Oskar A Haas
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Reinhard Ullmann
- c MPIMG , Max Planck Institute for Molecular Genetics , Berlin , Germany.,d Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm , Munich , Germany
| | - Andishe Attarbaschi
- e Department of Pediatric Hematology and Oncology , St. Anna Children's Hospital, Medical University of Vienna , Vienna , Austria
| | - Michael N Dworzak
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria.,e Department of Pediatric Hematology and Oncology , St. Anna Children's Hospital, Medical University of Vienna , Vienna , Austria
| | - Sabine Strehl
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| |
Collapse
|