1
|
Corsini E, Facchetti G, Esposito S, Maddalon A, Rimoldi I, Christodoulou MS. Antiproliferative effects of chalcones on T cell acute lymphoblastic leukemia-derived cells: Role of PKCβ. Arch Pharm (Weinheim) 2020; 353:e2000062. [PMID: 32394529 DOI: 10.1002/ardp.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
In this study, a series of 20 chalcone derivatives was synthesized, and their antiproliferative activity was tested against the human T cell acute lymphoblastic leukemia-derived cell line, CCRF-CEM. On the basis of the structural features of the most active compounds, a new library of chalcone derivatives, according to the structure-activity relationship design, was synthesized, and their antiproliferative activity was tested against the same cancer cell line. Furthermore, four of these derivatives (compounds 3, 4, 8, 28), based on lower IC50 values (between 6.1 and 8.9 μM), were selected for further investigation regarding the modulation of the protein expression of RACK1 (receptor for activated C kinase), protein kinase C (PKC)α and PKCβ, and their action on the cell cycle level. The cell cycle analysis indicated a block in the G0/G1 phase for all four compounds, with a statistically significant decrease in the percentage of cells in the S phase, with no indication of apoptosis (sub-G0/G1 phase). Compounds 4 and 8 showed a statistically significant reduction in the expression of PKCα and an increase in PKCβ, which together with the demonstration of an antiproliferative role of PKCβ, as assessed by treating cells with a selective PKCβ activator, indicated that the observed antiproliferative effect is likely to be mediated through PKCβ induction.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| | - Sara Esposito
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| | - Michael S Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Kim MS, Kang JW, Jeon JS, Kim JK, Kim JW, Hong J, Yoon DY. IL-32θ gene expression in acute myeloid leukemia suppresses TNF-α production. Oncotarget 2015; 6:40747-61. [PMID: 26516703 PMCID: PMC4747366 DOI: 10.18632/oncotarget.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
The proinflammatory cytokine TNF-α is highly expressed in patients with acute myeloid leukemia (AML) and has been demonstrated to induce rapid proliferation of leukemic blasts. Thus suppressing the production of TNF-α is important because TNF-α can auto-regulate own expression through activation of NF-κB and p38 mitogen-activated protein kinase (MAPK). In this study, we focused on the inhibitory effect of IL-32θ on TNF-α production in acute myeloid leukemia. Approximately 38% of patients with AML express endogenous IL-32θ, which is not expressed in healthy individuals. Furthermore, plasma samples were classified into groups with or without IL-32θ; then, we measured proinflammatory cytokine TNF-α, IL-1β, and IL-6 levels. TNF-α production was not increased in patients with IL-32θ expression than that in the no-IL-32θ group. Using an IL-32θ stable expression system in leukemia cell lines, we found that IL-32θ attenuated phorbol 12-myristate 13-acetate (PMA)-induced TNF-α production. IL-32θ inhibited phosphorylation of p38 MAPK, inhibitor of κB (IκB), and nuclear factor κB (NF-κB), which are key positive regulators of TNF-α expression, and inhibited nuclear translocation of NF-κB. Moreover, the presence of IL-32θ attenuated TNF-α promoter activity and the binding of NF-κB with the TNF-α promoter. In addition, IL-32γ-induced TNF-α production has no correlation with inhibition of TNF-α via IL-32θ expression. Thus, IL-32θ may serve as a potent inhibitor of TNF-α in patients with AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Case-Control Studies
- Chromatin Immunoprecipitation
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Interleukins/genetics
- Interleukins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Young Adult
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
- Current address: Seegene Inc., Seoul, Korea
| | - Jae-Sik Jeon
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jae Kyung Kim
- Dankook University College of Health Sciences, Department of Biomedical Laboratory Science, Cheonan, Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jintae Hong
- College of Pharmacy, Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kweon SH, Song JH, Kim HJ, Kim TS, Choi BG. Induction of human leukemia cell differentiation via PKC/MAPK pathways by arsantin, a sesquiterpene lactone from Artemisia santolina. Arch Pharm Res 2015; 38:2020-8. [DOI: 10.1007/s12272-015-0609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/23/2015] [Indexed: 11/28/2022]
|
4
|
JU SUNGMIN, KANG JUNGUE, PAE HYUNOCK, LEE GUEMSAN, KIM WONSIN, LYU YEOUNGSU, JEON BYUNGHUN. Nardostachys chinensis induces the differentiation of human promyelocytic leukemic cells through the activation of the protein kinase C-dependent extracellular signal-regulated kinase signaling pathway. Int J Mol Med 2013; 33:573-80. [DOI: 10.3892/ijmm.2013.1596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/03/2013] [Indexed: 11/06/2022] Open
|
5
|
Bade-Döding C, Göttmann W, Baigger A, Farren M, Lee KP, Blasczyk R, Huyton T. Autocrine GM-CSF transcription in the leukemic progenitor cell line KG1a is mediated by the transcription factor ETS1 and is negatively regulated through SECTM1 mediated ligation of CD7. Biochim Biophys Acta Gen Subj 2013; 1840:1004-13. [PMID: 24211252 DOI: 10.1016/j.bbagen.2013.10.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/17/2013] [Accepted: 10/27/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND CD7 expression is found on ~30% of acute myeloblastic leukemias (AML). The leukemic progenitor cell line KG1a (CD7+) constitutively expresses GM-CSF while the parental KG1 (CD7-) cell line does not. This study focuses on the molecular basis of CD7 mediated GM-CSF regulation. METHODS KG1a cells were treated with recombinant SECTM1-Fc protein, the PI3K kinase inhibitors wortmannin, LY292004, or PI4K activator spermine. Stable KG1-CD7+, KG1a-shCD7, KG1a-shETS1 as well as KG1a-GFP, KG1a-PKCβII-GFP cell lines were generated and the levels of CD7, GM-CSF and ETS-1 mRNA and protein were compared by real-time-PCR, western blotting, flow cytometry and ELISA. RESULTS SECTM1 is expressed in Human Bone Marrow Endothelial Cells (HBMEC) and its expression can be upregulated by both IFN-γ. KG1a cells demonstrated high expression levels of CD7 and ETS-1 allowing a constitutative signaling through the PI3K/Atk pathway to promote GM-CSF expression, while KG1 cells with low expression of CD7 and ETS-1 showed low GM-CSF expression. On KG1a cells GM-CSF expression could be negatively regulated by PI3K inhibitors or by recombinant SECTM1-Fc. Overexpression of CD7 in KG1 cells was insufficient to promote GM-CSF expression, while silencing of CD7 or ETS-1 resulted in reduced GM-CSF expression levels. Differentiation capable KG1a cells overexpressing PKCβII illustrated complete loss of CD7, but maintained normal levels of both ETS-1 and GM-CSF expression. CONCLUSION These findings add an additional layer to the previously described autocrine/paracrine signaling between leukemic progenitor cells and the bone marrow microenvironment and highlight a role for SECTM1 in both normal and malignant hematopoiesis. GENERAL SIGNIFICANCE This work shows that SECTM1 secreted from bone marrow stromal cells may interact with CD7 to influence GM-CSF expression in leukemic cells.
Collapse
Affiliation(s)
- Christina Bade-Döding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Wiebke Göttmann
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Anja Baigger
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Matthew Farren
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14226, USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14226, USA
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Trevor Huyton
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
6
|
Li X, Meng H, Chen BD. Differentiation-Associated Expression of Conventional Protein Kinase C Isoforms in Primary Cultures of Bone Marrow Cells Induced by M-CSF and G-CSF. ACTA ACUST UNITED AC 2009; 1:47-55. [PMID: 20535245 DOI: 10.5099/aj090100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Protein kinase C (PKC) -associated signal pathway plays crucial roles in regulation of cell growth, differentiation and apoptosis. The present study focuses on conventional PKC (cPKC) expression and its regulation in primary cultures of bone marrow cells induced to undergo macrophage/granulocyte differentiation by macrophage colony-stimulating factor (M-CSF) or granular colony-stimulating factor (G-CSF). By performing western blot analysis with pan anti-PKC antibodies, we found that PKC is transiently induced by M-CSF, reaching a maximum level by day 2, and then declines and diminishes by day 9 in primary culture of bone marrow cells. In contrast, the expression of PKC along G-CSF induced granulocytic differentiation of bone marrow stem cells is low and increases gradually. Reverse transcription-PCR (RT-PCR) assay was utilized to investigate the expression of PKC isoforms. PKC-alpha is constitutively expressed in bone marrow cells independently of hematopoietic growth factors in cultures. PKC-gamma mRNA is undetectable. Similarly, the expression of PKC-beta is transiently induced by M-CSF, yet steadily increased by G-CSF, in agreement with results obtained from PKC protein expression. Furthermore, gel-shift assay showed that the activation of NF-kappaB is transiently induced by M-CSF but not by G-CSF. These data suggest that PKC expression is involved in both macrophage and granulocyte differentiation by bone marrow committed stem cells. Yet, NF-kappaB activation is only detected in macrophage and not granulocyte differentiation. Thus, we conclude that the PKC-mediated signaling pathway is distinctly involved in bone-marrow cell differentiation induced by M-CSF and G-CSF.
Collapse
Affiliation(s)
- Xiaohua Li
- Barbara Ann Karmanos Cancer Institute, and Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
7
|
Guzman ML, Li X, Corbett CA, Rossi RM, Bushnell T, Liesveld JL, Hébert J, Young F, Jordan CT. Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 2007; 110:4436-44. [PMID: 17785584 PMCID: PMC2234782 DOI: 10.1182/blood-2007-05-088815] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leukemia is thought to arise from malignant stem cells, which have been described for acute and chronic myeloid leukemia (AML and CML) and for acute lymphoblastic leukemia (ALL). Leukemia stem cells (LSCs) are relatively resistant to current chemotherapy and likely contribute to disease relapse and progression. Consequently, the identification of drugs that can efficiently eradicate LSCs is an important priority. In the present study, we investigated the antileukemia activity of the compound TDZD-8. Analysis of primary AML, blast crisis CML (bcCML), ALL, and chronic lymphoblastic leukemia (CLL) specimens showed rapid induction of cell death upon treatment with TDZD-8. In addition, for myeloid leukemias, cytotoxicity was observed for phenotypically primitive cells, in vitro colony-forming progenitors, and LSCs as defined by xenotransplantation assays. In contrast, no significant toxicity was observed for normal hematopoietic stem and progenitor cells. Notably, cell death was frequently evident within 2 hours or less of TDZD-8 exposure. Cellular and molecular studies indicate that the mechanism by which TDZD-8 induces cell death involves rapid loss of membrane integrity, depletion of free thiols, and inhibition of both the PKC and FLT3 signaling pathways. We conclude that TDZD-8 uses a unique and previously unknown mechanism to rapidly target leukemia cells, including malignant stem and progenitor populations.
Collapse
Affiliation(s)
- Monica L Guzman
- James P Wilmot Cancer Center, University of Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim SH, Oh SM, Kim TS. Induction of human leukemia HL-60 cell differentiation via a PKC/ERK pathway by helenalin, a pseudoguainolide sesquiterpene lactone. Eur J Pharmacol 2005; 511:89-97. [PMID: 15792776 DOI: 10.1016/j.ejphar.2005.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 02/02/2005] [Accepted: 02/09/2005] [Indexed: 01/04/2023]
Abstract
Helenalin, a cell-permeable pseudoguainolide sesquiterpene lactone, is a potent anti-inflammatory agent that inhibits nuclear factor-kappa B (NF-kappa B) DNA binding activity. In this report, we investigated the effect of helenalin on cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system. Helenalin by itself markedly induced HL-60 cell differentiation in a concentration-dependent manner. Cytofluorometric analysis and cell morphologic studies indicated that helenalin induced cell differentiation predominantly into granulocytes. Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors significantly inhibited HL-60 cell differentiation induced by helenalin, while p38 mitogen-activated protein kinase (MAPK) inhibitors did not. Moreover, helenalin enhanced PKC activity and protein level of PKC beta I and PKC beta II isoforms, and also increased the level of pERK in a concentration-dependent manner. In addition, the enhanced levels of cell differentiation closely correlated with the decreased levels of NF-kappa B binding activity by helenalin. These results indicate that PKC, ERK, and NF-kappa B may be involved in HL-60 cell differentiation induced by helenalin.
Collapse
Affiliation(s)
- Seung H Kim
- Immunology Laboratory, College of Pharmacy, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | |
Collapse
|
9
|
Alkan S, Huang Q, Ergin M, Denning MF, Nand S, Maududi T, Paner GP, Ozpuyan F, Izban KF. Survival role of protein kinase C (PKC) in chronic lymphocytic leukemia and determination of isoform expression pattern and genes altered by PKC inhibition. Am J Hematol 2005; 79:97-106. [PMID: 15929099 DOI: 10.1002/ajh.20352] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent studies have suggested that protein kinase C (PKC) activation plays an important role in survival of chronic lymphocytic leukemia (CLL). In order to characterize the role of PKC in CLL, we investigated the expression pattern of PKC isoforms in CLL cells (7 cases) and evaluated the effect of PKC inhibition on the survival of CLL cells (20 cases). Expression of the classical PKC isoforms beta and gamma, the novel isoform delta and the atypical isoform zeta was seen in all analyzed patient samples by Western blot analysis. Expression of the PKC isoforms alpha, epsilon, and iota was variable. Following incubation with the PKC inhibitor, safingol, CLL cells underwent marked apoptosis in all cases. In order to characterize the molecular events associated with the apoptotic effect of PKC inhibition, gene expression patterns in CLL cells were evaluated by cDNA-microarray analysis. Following safingol treatment, several genes showed marked downregulation and PKC-related proteins demonstrated decreased hybridization signals. Among these proteins, CREB and Daxx were further studied by using Western blotting, nuclear binding assay and confocal immunofluorescent microscopy. These studies showed significant inhibition of these proteins, consistent with the results of microarray gene analysis. Overall, these findings suggest that PKC activation is important for CLL cell survival and that inhibitors of PKC may have a role in the treatment of patients with CLL.
Collapse
Affiliation(s)
- Serhan Alkan
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Amin HM, Ergin M, Denning MF, Quevedo ME, Alkan S. Characterization of apoptosis induced by protein kinase C inhibitors and its modulation by the caspase pathway in acute promyelocytic leukaemia. Br J Haematol 2000; 110:552-62. [PMID: 10997964 DOI: 10.1046/j.1365-2141.2000.02207.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute promyelocytic leukaemia (APL;M3) is a unique form of acute myelogenous leukaemia characterized by t(15;17) translocation. The induction of apoptosis via inhibiting protein kinase C (PKC) has been recently viewed as a promising tool for the eradication of several malignant disorders. In the present study, we investigated the effect of two different protein kinase C inhibitors, Gö6976 and safingol, on the induction of apoptosis in the APL cell line NB4 and its all trans retinoic acid (ATRA)-resistant variant NB4.306. The effect of the PKC inhibitors on leukaemic cells obtained from three APL patients was also studied. We also evaluated the possible involvement of the caspases in apoptosis induced by PKC inhibitors. Significant time- and concentration-dependent apoptotic changes were demonstrated using Gö6976 and safingol. In addition, our results demonstrated that the caspases were involved in the apoptosis induced by the PKC inhibitors. In conclusion, our study illustrates that the PKC inhibitors Gö6976 and safingol induce apoptosis in APL and hence could be potential therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- H M Amin
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
11
|
Granulocyte-Macrophage Colony-Stimulating Factor Rescues TF-1 Leukemia Cells From Ionizing Radiation-Induced Apoptosis Through a Pathway Mediated by Protein Kinase Cα. Blood 1998. [DOI: 10.1182/blood.v92.2.416.414k01_416_424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) activity has a recognized role in mediating apoptosis. However, the role of individual PKC isoforms in apoptosis is poorly defined. Therefore, we investigated the translocation of individual PKC isoforms during radiation-induced apoptosis with and without rescue from apoptosis by granulocyte-macrophage colony-stimulating factor (GM-CSF) in the human erythroleukemia cell line TF-1. PKCα was translocated from the particulate to cytosolic fraction of TF-1 cells within 5 minutes of treatment with apoptosis-inducing levels of ionizing radiation. However, this postirradiation translocation did not occur when cells were rescued from apoptosis by GM-CSF. Furthermore, treatment of cells with Gö6976, an inhibitor of classical PKC isoforms, abrogated the rescue effect of GM-CSF. The calcium-independent novel PKC isoform, PKCδ appeared to be degraded in both the particulate and cytosolic fractions of TF-1 cells after treatment with apoptosis-inducing levels of ionizing radiation in either the presence or absence of GM-CSF rescue. Levels of ceramide, a lipid mediator of apoptosis, were measured at 2, 4, 8, 10, and 60 minutes after treatment with ionizing radiation and were substantially reduced in TF-1 cells rescued from apoptosis by GM-CSF compared with apoptotic TF-1 cells. The largest decrease in ceramide production seen was at 4 minutes postirradiation, with a 46% reduction in ceramide levels in TF-1 cells rescued from apoptosis by GM-CSF compared with those in apoptotic TF-1 cells. Because ceramide has been shown to affect PKCα subcellular distribution, these data implicate a role for ceramide in mediating the rapid postirradiation translocation and inhibition of PKCα in TF-1 cells not rescued from apoptosis by GM-CSF. Expression of the antiapoptotic protein Bcl-2 doubled in TF-1 cells rescued from apoptosis by GM-CSF, but did not increase in unrescued cells. Our findings suggest that activated PKCα and increased expression of Bcl-2 after γ irradiation determine survival in TF-1 cells rescued from apoptosis with GM-CSF and that PKCδ plays a role in mediating signals involved in sensing cellular damage and/or regulation of cell damage repair.
Collapse
|
12
|
Granulocyte-Macrophage Colony-Stimulating Factor Rescues TF-1 Leukemia Cells From Ionizing Radiation-Induced Apoptosis Through a Pathway Mediated by Protein Kinase Cα. Blood 1998. [DOI: 10.1182/blood.v92.2.416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtein kinase C (PKC) activity has a recognized role in mediating apoptosis. However, the role of individual PKC isoforms in apoptosis is poorly defined. Therefore, we investigated the translocation of individual PKC isoforms during radiation-induced apoptosis with and without rescue from apoptosis by granulocyte-macrophage colony-stimulating factor (GM-CSF) in the human erythroleukemia cell line TF-1. PKCα was translocated from the particulate to cytosolic fraction of TF-1 cells within 5 minutes of treatment with apoptosis-inducing levels of ionizing radiation. However, this postirradiation translocation did not occur when cells were rescued from apoptosis by GM-CSF. Furthermore, treatment of cells with Gö6976, an inhibitor of classical PKC isoforms, abrogated the rescue effect of GM-CSF. The calcium-independent novel PKC isoform, PKCδ appeared to be degraded in both the particulate and cytosolic fractions of TF-1 cells after treatment with apoptosis-inducing levels of ionizing radiation in either the presence or absence of GM-CSF rescue. Levels of ceramide, a lipid mediator of apoptosis, were measured at 2, 4, 8, 10, and 60 minutes after treatment with ionizing radiation and were substantially reduced in TF-1 cells rescued from apoptosis by GM-CSF compared with apoptotic TF-1 cells. The largest decrease in ceramide production seen was at 4 minutes postirradiation, with a 46% reduction in ceramide levels in TF-1 cells rescued from apoptosis by GM-CSF compared with those in apoptotic TF-1 cells. Because ceramide has been shown to affect PKCα subcellular distribution, these data implicate a role for ceramide in mediating the rapid postirradiation translocation and inhibition of PKCα in TF-1 cells not rescued from apoptosis by GM-CSF. Expression of the antiapoptotic protein Bcl-2 doubled in TF-1 cells rescued from apoptosis by GM-CSF, but did not increase in unrescued cells. Our findings suggest that activated PKCα and increased expression of Bcl-2 after γ irradiation determine survival in TF-1 cells rescued from apoptosis with GM-CSF and that PKCδ plays a role in mediating signals involved in sensing cellular damage and/or regulation of cell damage repair.
Collapse
|
13
|
Nishikawa M, Omay SB, Nakai K, Kihira H, Kobayashi T, Tamura S, Shiku H. Up-regulation of protein serine/threonine phosphatase type 2C during 1 alpha,25-dihydroxyvitamin D3-induced monocytic differentiation of leukemic HL-60 cells. FEBS Lett 1995; 375:299-303. [PMID: 7498522 DOI: 10.1016/0014-5793(95)01209-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Treatment with 20 nM 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) caused a progressive increase in the activity of Mg(2+)-dependent protein serine/threonine phosphatase type 2C (PP2C) in subcellular fractions of HL-60 cells, whereas PP2C activity was relatively constant throughout all-trans retinoic acid-induced (1 microM) granulocytic differentiation. The increase in PP2C activity appeared to parallel the 1,25(OH)2D3-induced phenotypic and functional changes in HL-60 cells. Immunoblot and Northern blot analysis indicated that the increase in PP2C activity corresponded to the increased expression of PP2C protein, which was preceded by an increase in the level of mRNA for PP2C beta. No mRNA for PP2C alpha was detected in resting or 1,25(OH)2D3-stimulated HL-60 cells. These results suggest that the increased expression of PP2C is related with the 1,25(OH)2D3-induced monocytic differentiation of HL-60 cells.
Collapse
Affiliation(s)
- M Nishikawa
- 2nd Department of Internal Medicine, Mie University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
van der Hem KG, Dräger AM, Odding JH, Huijgens PC. Effects of bryostatin-5 and hematopoietic growth factors on acute myeloid leukemia cell differentiation, proliferation, and primary plating efficiency. Leuk Res 1995; 19:651-7. [PMID: 7564476 DOI: 10.1016/0145-2126(95)00052-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the effect of bryostatin-5 (bryo-5) with and without a combination of myeloid growth promoting factors on human acute myeloid leukemia (AML) cell growth, maturation, and primary plating efficiency. In vitro treatment of AML samples with bryo-5 induced a macrophage-like cell differentiation as evidenced by morphological changes, esterase staining, and cell surface expression of CD11a and CD18. AML cells exposed to growth factors doubled their cell numbers following culture, this increase being abrogated by co-exposure to bryo-5. An antiproliferative effect, as well as the antagonistic interaction of bryo-5 with growth factors, was confirmed in methylcellulose clonogenic assays. Together, these findings indicate that the compound bryo-5 exerts an anti-proliferative effect on AML cells and counteracts growth factor induced leukemic proliferation.
Collapse
Affiliation(s)
- K G van der Hem
- Department of Hematology, Free University Hospital, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Cole OF, Seki H, Sullivan MH, Elder MG. Interleukin-1 beta-stimulated prostaglandin synthesis by human decidual cells is independent of protein kinase C. PROSTAGLANDINS 1995; 49:69-77. [PMID: 7480798 DOI: 10.1016/0090-6980(95)00006-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Basal prostaglandin E2 (PGE2) synthesis by human decidual cells was stimulated by phorbol myristate acetate (PMA) which activates protein kinase C. Staurosporine, which is an inhibitor of protein kinase C in most systems, also increased basal PGE2 synthesis. Further work is needed to explain this finding, as another inhibitor of protein kinase C, H7, inhibited PGE2 production under similar culture conditions. Interleukin-1 beta (IL-1 beta)-stimulated PGE2 synthesis was potentiated by coincubation with PMA or staurosporine, indicating that IL-1 beta and protein kinase C increase decidual PGE2 synthesis through different mechanisms. Desensitization of the decidual cells for 24 h with PMA did not affect IL-1 beta-stimulated PGE2 synthesis. The complex roles of protein kinase C in regulating decidual prostaglandin synthesis require further investigation, but it is clear that the effects of IL-1 beta are not mediated by protein kinase C.
Collapse
Affiliation(s)
- O F Cole
- R.P.M.S. Institute of Obstetrics & Gynaecology, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
16
|
van der Hem KG, Dräger AM, Odding JH, Langenhuijsen MM, Huijgens PC. Bryostatin-5 stimulates normal human hematopoiesis and inhibits proliferation of HL60 leukemic cells. Leuk Res 1995; 19:7-13. [PMID: 7837820 DOI: 10.1016/0145-2126(94)00118-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study we explored the effects of bryostatin-5 on the clonogenic response of normal bone marrow mononuclear (BM) cells and HL60 myeloid leukemia cells. Leukemic HL60 colony formation was strongly inhibited by bryostatin-5 depending on dose and schedule. An inhibitory effect on HL60 colony formation was readily demonstrated after 1 h of exposure, reaching a maximal inhibitory effect at 96 h. Normal BM cells differed in their clonogenic response: short-term exposure to bryostatin-5 resulted in increased clonogenicity while longstanding exposure to bryostatin-5 permitted the survival of a substantial fraction of committed progenitors. This differential modulation of normal and leukemic myeloid clonogenicity by bryostatin-5 suggests a possible role for bryostatin-5 in the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- K G van der Hem
- Department of Hematology, Free University Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Tawara I, Nishikawa M, Morita K, Kobayashi K, Toyoda H, Omay SB, Shima H, Nagao M, Kuno T, Tanaka C. Down-regulation by retinoic acid of the catalytic subunit of protein phosphatase type 2A during granulocytic differentiation of HL-60 cells. FEBS Lett 1993; 321:224-8. [PMID: 8386680 DOI: 10.1016/0014-5793(93)80113-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Activity of protein phosphatase measured in the absence of divalent cations was decreased by 50% during all-trans retinoic acid (ATRA)-induced HL-60 cell differentiation into the granulocytic phenotype. Treatment of HL-60 cells with ATRA led to a dramatic decrease in the amount of protein phosphatase type 2A (PP2A) protein, whereas that of protein phosphatase type 1 (PP1) protein was relatively constant, as detected by immunoblotting with antibodies specific to PP1 and PP2A. The decreased phosphatase activity may be mainly due to a decrease in the expression of the PP2A protein. The mRNA level of PP2A beta was markedly decreased within 5 h after addition of ATRA, but there was only a slight increase in the mRNA level of PP2A alpha. Selective down-regulation of PP2A beta mRNA clearly preceded the cell differentiation induced by ATRA treatment. Thus, PP2A is down-regulated during ATRA-induced differentiation of HL-60 cells into granulocytes.
Collapse
Affiliation(s)
- I Tawara
- Second Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|