1
|
Buriak I, Kumeiko V. Marine Lectins and Lectin-like Proteins as Promising Molecules Targeting Aberrant Glycosylation Signatures in Human Brain Tumors. Mar Drugs 2024; 22:527. [PMID: 39728102 DOI: 10.3390/md22120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Glycosylation is a ubiquitous and the most structurally diverse post-translational modification of proteins. High levels of phenotypic heterogeneity in brain tumors affect the biosynthetic pathway of glycosylation machinery, resulting in aberrant glycosylation patterns. Traditionally, unique glycocode readers, carbohydrate-binding proteins, have been used to identify differentially expressed carbohydrate determinants associated with the tumor cell surface. However, identifying novel distinctive glycosylation signatures in brain tumors requires the timely development of molecular tools capable of targeting them. We classified marine-derived lectins and lectin-like molecules according to their ability to cover aberrant glycosylation patterns in brain tumors to encourage exploration of the potential of these molecules for precision diagnostics and personalized therapy.
Collapse
Affiliation(s)
- Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
2
|
Li G, Zhao Z, Wu B, Su Q, Wu L, Yang X, Chen J. Ulva pertusa lectin 1 delivery through adenovirus vector affects multiple signaling pathways in cancer cells. Glycoconj J 2017; 34:489-498. [PMID: 28349379 DOI: 10.1007/s10719-017-9767-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/26/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Ulva pertusa lectin 1 (UPL1) is a N-acetyl-D-glucosamine (GlcNAc) binding lectin in marine green alga Ulva pertusa. Exogenous UPL1 colocalized with protein arginine methyltransferase 5 (PRMT5), methylosome protein 50 (MEP50), β-actin and β-tubulin, indicating the interaction of UPL1 with the methylosome and cytoskeleton. UPL1 delivery through adenovirus vector (Ad-UPL1) dramatically induced extracellularly regulated protein kinases 1/2 (ERK1/2) phosphorylation in liver cancer cell lines BEL-7404 and Huh7. Signaling pathways including p38 mitogen-activated protein kinase (MAPK), and Akt were also affected by Ad-UPL1 in a cell type dependent manner. MEK1/2 inhibitor U0126, as well as to a lesser extent p38 MAPK inhibitor SB203580 and phosphoinositide 3-kinase (PI3K) inhibitor LY294002, completely eliminated a higher molecular weight isoform of β-tubulin induced by Ad-UPL1, and significantly enhanced the cytotoxicity of Ad-UPL1 in Huh7 cells, suggesting that the inhibition of MEK1/2, p38 MAPK, and PI3K enhanced antiproliferative effect of Ad-UPL1 possibly through regulating the modification of β-tubulin. Ad-UPL1 completely inhibited the expression of autophagy-related factor Beclin1, but induced LC3-II expression in Huh7 cells. In addition, Ad-UPL1 significantly enhanced starvation induced survival suppression in Huh7 cells. Our data elucidated intracellular signaling pathways affected by exogenous UPL1, and may provide insights into a novel way of UPL1 delivery through adenovirus vectors combined with survival signaling inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| | - Zhenzhen Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Bingbing Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qunshu Su
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Liqin Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xinyan Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 2015; 99:3755-73. [PMID: 25794876 PMCID: PMC7080081 DOI: 10.1007/s00253-015-6518-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Abstract
Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Gomes Filho SM, Cardoso JD, Anaya K, Silva do Nascimento E, de Lacerda JTJG, Mioso R, Santi Gadelha T, de Almeida Gadelha CA. Marine sponge lectins: actual status on properties and biological activities. Molecules 2014; 20:348-57. [PMID: 25549059 PMCID: PMC6272496 DOI: 10.3390/molecules20010348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are primitive metazoans that produce a wide variety of molecules that protect them against predators. In studies that search for bioactive molecules, these marine invertebrates stand out as promising sources of new biologically-active molecules, many of which are still unknown or little studied; thus being an unexplored biotechnological resource of high added value. Among these molecules, lectins are proteins that reversibly bind to carbohydrates without modifying them. In this review, various structural features and biological activities of lectins derived from marine sponges so far described in the scientific literature are discussed. From the results found in the literature, it could be concluded that lectins derived from marine sponges are structurally diverse proteins with great potential for application in the production of biopharmaceuticals, especially as antibacterial and antitumor agents.
Collapse
Affiliation(s)
- Sandro Mascena Gomes Filho
- Laboratório de Proteômica Estrutural, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB CEP 58059-900, Brazil
| | - Juscélio Donizete Cardoso
- Laboratório de Proteômica Estrutural, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB CEP 58059-900, Brazil
| | - Katya Anaya
- Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Centro, Santa Cruz, RN CEP 5900000, Brazil
| | - Edilza Silva do Nascimento
- Laboratório de Proteômica Estrutural, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB CEP 58059-900, Brazil
| | - José Thalles Jucelino Gomes de Lacerda
- Laboratório de Proteômica Estrutural, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB CEP 58059-900, Brazil
| | - Roberto Mioso
- Engenharia de Pesca, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/nº, São Cristóvão, SE CEP 49100000, Brazil
| | - Tatiane Santi Gadelha
- Laboratório de Proteômica Estrutural, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB CEP 58059-900, Brazil
| | - Carlos Alberto de Almeida Gadelha
- Laboratório de Proteômica Estrutural, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB CEP 58059-900, Brazil.
| |
Collapse
|