1
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Modulatory effect of ginger on skeletal malformations, cell cycle, apoptosis and structural changes in the liver of rat fetuses prenatally exposed to labetalol. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Drug-induced liver damage with clinical symptoms has been related to labetalol in a number of instances. In addition to having a wide range of anti-inflammatory and antioxidant qualities, ginger also includes biotrace that are crucial in the fight against disease and skeletal deformity. In this study, we hypothesized that prenatal supplementation of ginger (200 mg/kg) attenuates skeletal malformation and hepatotoxicity mediated by labetalol during the organogenesis period. The tested dams were divided into four groups: control, ginger (200 mg/kg), labetalol (300 mg/kg) and combined group (labetalol and ginger at the same doses).
Results
The labetalol group showed various skeletal abnormalities represented by mandibular hypoplasia, costal separation and retardation in the ossification. Histological and ultrastructural examination of the fetal liver tissue revealed multiple pathological changes. DNA damage, G0/G1 cell cycle arrest and a high percentage of apoptosis were also detected in the fetal hepatocytes from labetalol groups through gel electrophoresis and flow cytometry using PI and annexin V/PI methods, respectively. Administration of ginger after labetalol caused an evident decrease in these skeletal malformations, structural changes, DNA damage, apoptosis and G0/G1 cell cycle arrest.
Conclusions
It can be concluded that ginger has great potential in attenuating the skeletal malformation, structural changes and cyto-genotoxicity of fetal hepatocytes upon prenatal exposure to labetalol.
Collapse
|
3
|
Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 2022; 170:111982. [PMID: 36244584 DOI: 10.1016/j.exger.2022.111982] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre (CIC), 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikneswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zhao Y, Yang Y, Li Q, Li J. Understanding the Unique Microenvironment in the Aging Liver. Front Med (Lausanne) 2022; 9:842024. [PMID: 35280864 PMCID: PMC8907916 DOI: 10.3389/fmed.2022.842024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past decades, many studies have focused on aging because of our pursuit of longevity. With lifespans extended, the regenerative capacity of the liver gradually declines due to the existence of aging. This is partially due to the unique microenvironment in the aged liver, which affects a series of physiological processes. In this review, we summarize the related researches in the last decade and try to highlight the aging-related alterations in the aged liver.
Collapse
Affiliation(s)
- Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Jianzhou Li
| |
Collapse
|
5
|
Hamam G, Bahaa N, Raafat M. Can intranasal administration of adipose-derived stem cells reach and affect the histological structure of distant organs of aged wistar rat? J Microsc Ultrastruct 2022; 11:1-11. [PMID: 37144165 PMCID: PMC10153733 DOI: 10.4103/jmau.jmau_78_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Stem cell therapy is a highly promising strategy in various degenerative diseases. Intranasal administration of stem cells could be considered as a non-invasive treatment option. However, there is great debate concerning the ability of stem cells to reach distant organs. It is also unclear in such a case if they can alleviate age-related structural changes in these organs. Aim The aim of this study is to evaluate the ability of intranasal administration of adipose-derived stem cells (ADSCs) to reach distant organs of rats at different time intervals and to investigate their effects on age-related structural changes in these organs. Materials and Methods Forty-nine female Wistar rats were used in this study, seven of which were adults (6-month-old) and 42 were aged (2-year-old). Rats were divided into three-groups: Group-I (adult control), Group-II (aged), and Group-III (aged ADSCs treated). Rats of Groups I and II were sacrificed after 15 days from the beginning of the experiment. Rats of Group III were treated with intranasal ADSCs and were sacrificed after 2-h, 1-day, 3-day, 5-day, and 15-day. Heart, liver, kidney, and spleen specimens were collected and processed for H and E, CD105 immunohistochemistry, and immunofluorescent techniques. Morphometric study and statistical analysis were performed. Results ADSCs appeared in all organs examined after 2-h of intranasal administration. Their maximum presence was detected after 3-day of administration, after which their immunofluorescence gradually decreased and nearly disappeared from these organs by the 15th day. Improvement of some age-related deterioration in the structure of the kidney and liver occurred at day 5 after intranasal administration. Conclusions ADSCs effectively reached the heart, liver, kidney, and spleen after intranasal administration. ADSCs ameliorated some age-related changes in these organs.
Collapse
|
6
|
Ooi SL, Campbell R, Pak SC, Golombick T, Manoharan A, Ramakrishna R, Badmaev V, Schloss J. Is 6-Shogaol an Effective Phytochemical for Patients With Lower-risk Myelodysplastic Syndrome? A Narrative Review. Integr Cancer Ther 2021; 20:15347354211065038. [PMID: 34930049 PMCID: PMC8728773 DOI: 10.1177/15347354211065038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndrome (MDS) evolves due to genomic instability, dysregulated signaling pathways, and overproduction of inflammatory markers. Reactive oxygen species contribute to the inflammatory response, which causes gene damage, cellular remodeling, and fibrosis. MDS can be a debilitating condition, and management options in patients with MDS aim to improve cytopenias, delay disease progression, and enhance quality of life. High serum ferritin levels, a source of iron for reactive oxygen species production, correlate with a higher risk of progression to acute myeloid leukemia, and iron overload is compounded by blood transfusions given to improve anemia. 6-shogaol is a natural phenolic compound formed when ginger is exposed to heat and/or acidic conditions, and it has been shown to possess anti-tumor activity against leukemia cell lines and antioxidant effects. This narrative review assessed the potential benefits of this phytochemical in lower-risk MDS patients through examining the current evidence on the pharmacological and therapeutic properties of ginger and 6-shogaol.
Collapse
Affiliation(s)
| | - Ron Campbell
- Charles Sturt University, Bathurst,
NSW, Australia
- The Oaks Medical Practice, The Oaks,
NSW, Australia
| | | | | | - Arumugam Manoharan
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | - Raj Ramakrishna
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | | | | |
Collapse
|
7
|
Leal DT, Fontes GG, Villa JKD, Freitas RB, Campos MG, Carvalho CA, Pizziolo VR, Diaz MAN. Zingiber officinale formulation reduces hepatic injury and weight gain in rats fed an unhealthy diet. AN ACAD BRAS CIENC 2019; 91:e20180975. [PMID: 31721920 DOI: 10.1590/0001-3765201920180975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/03/2018] [Indexed: 01/24/2023] Open
Abstract
This study investigated the ability of formulation containing Zingiber officinale (ginger) to reverse health changes promoted by unhealthy diet in Wistar rats. Five compounds from the gingerol family and three from the shogaol family were identified in the chromatographic analyzes of the extract. The animals were fed a combination of unhealthy foods, the cafeteria diet, which promoted increases in body weight, hepatocyte nucleus area, total hepatocyte area and liver fat accumulation, as well as reduced hepatic glutathione S-transferase concentration, compared to the control group, which received commercial chow. The treatment with ginger improved all these results, highlighting the reduction of 10% of body weight and 66% of the total area of lipid droplets deposited, compared to the group that received the cafeteria diet. Ginger treatments also attenuated lipid peroxidation, with a mean reduction of 41% in malondialdehyde levels and a mean increase of 222% in glutathione S-transferase activity in the liver. The cafeteria diet and ginger extract did not promote significant changes in glycemic and lipid profile, liver weight and liver enzymes compared to the control group. We suggest that ginger can have beneficial effects on health complications associated with unhealthy diet, such as excessive adiposity, oxidative stress and hepatic injury.
Collapse
Affiliation(s)
- Dalila T Leal
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| | - Gleide G Fontes
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora/UFJF, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Julia K D Villa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| | - Rodrigo B Freitas
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| | - Mateus G Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| | - Camilo A Carvalho
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| | - Virginia R Pizziolo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| | - Marisa A N Diaz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa/UFV, Avenida P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
8
|
Mahmoud YI, Mahmoud AA, Abo-Zeid FS, Fares NH. Effect of dehydroepiandrosterone on the liver of perimenopausal rat: multiple doses study. Ultrastruct Pathol 2018; 42:333-343. [PMID: 29932802 DOI: 10.1080/01913123.2018.1485806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a widespread nutritional "anti-aging" supplement. Exogenous supplementation of DHEA is now being commonly used to augment ovarian stimulation in perimenopausal women with diminished ovarian reserve. Whether DHEA causes side effects in such age is, however, unknown. Thus, this study investigates the effects of pharmacological doses of DHEA supplementation on the liver of perimenopausal rats. DHEA supplementation to perimenopausal rats resulted in slight hepatomegaly and steatosis, hepatocytic hypertrophy, mitochondrial swelling, elevation in serum alanine aminotransaminase levels, in addition to the accumulation of lipid droplets and lipolysosomes in a dose-dependent manner. In conclusion, long-term administration of high doses of DHEA causes ultrastructural alterations and changes in the levels of cholesterol and triglyceride in hepatocytes of perimenopausal rats. DHEA at a dose of 50 mg/kg improves health and decreases the body weight, with the least side effects on the liver of perimenopausal rats.
Collapse
Affiliation(s)
- Yomna I Mahmoud
- a Zoology Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Asmaa A Mahmoud
- a Zoology Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Faten S Abo-Zeid
- a Zoology Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Nagui H Fares
- a Zoology Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| |
Collapse
|
9
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|