1
|
Creanga-Murariu I, Filipiuc LE, Cuciureanu M, Tamba BI, Alexa-Stratulat T. Should oncologists trust cannabinoids? Front Pharmacol 2023; 14:1211506. [PMID: 37521486 PMCID: PMC10373070 DOI: 10.3389/fphar.2023.1211506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Cannabis enjoyed a "golden age" as a medicinal product in the late 19th, early 20th century, but the increased risk of overdose and abuse led to its criminalization. However, the 21st century have witnessed a resurgence of interest and a large body of literature regarding the benefits of cannabinoids have emerged. As legalization and decriminalization have spread around the world, cancer patients are increasingly interested in the potential utility of cannabinoids. Although eager to discuss cannabis use with their oncologist, patients often find them to be reluctant, mainly because clinicians are still not convinced by the existing evidence-based data to guide their treatment plans. Physicians should prescribe cannabis only if a careful explanation can be provided and follow up response evaluation ensured, making it mandatory for them to be up to date with the positive and also negative aspects of the cannabis in the case of cancer patients. Consequently, this article aims to bring some clarifications to clinicians regarding the sometimes-confusing various nomenclature under which this plant is mentioned, current legislation and the existing evidence (both preclinical and clinical) for the utility of cannabinoids in cancer patients, for either palliation of the associated symptoms or even the potential antitumor effects that cannabinoids may have.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Leontina Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magda Cuciureanu
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | | |
Collapse
|
2
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
3
|
Silva-Reis R, Silva AMS, Oliveira PA, Cardoso SM. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules 2023; 13:764. [PMID: 37238634 PMCID: PMC10216468 DOI: 10.3390/biom13050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Recently, considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. This review focuses on the current knowledge about the potential of cannabinoids and terpenoids from C. sativa to serve as bioactive agents for the treatment of CRC while evidencing the need for further research to fully elucidate the mechanisms of action and the safety of these compounds.
Collapse
Affiliation(s)
- Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Clinical Academic Center of Trás-os-Montes and Alto Douro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| |
Collapse
|
4
|
PREPARATION AND CHARACTERIZATION OF FULL-SPECTRUM CANNABIS EXTRACT LOADED POLY(THIOETHER-ESTER) NANOPARTICLES: IN VITRO EVALUATION OF THEIR ANTITUMORAL EFFICACY. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Boyacıoğlu Ö, Bilgiç E, Varan C, Bilensoy E, Nemutlu E, Sevim D, Kocaefe Ç, Korkusuz P. ACPA decreases non-small cell lung cancer line growth through Akt/PI3K and JNK pathways in vitro. Cell Death Dis 2021; 12:56. [PMID: 33431819 PMCID: PMC7801394 DOI: 10.1038/s41419-020-03274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Therapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39 × 10-12 M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24 hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Hacettepe University, Graduate School of Science and Engineering, Department of Bioengineering, 06800, Beytepe, Ankara, Turkey
- Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Elif Bilgiç
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey
| | - Cem Varan
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Duygu Sevim
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Çetin Kocaefe
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Petek Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
6
|
Salami SA, Martinelli F, Giovino A, Bachari A, Arad N, Mantri N. It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets. Molecules 2020; 25:E4036. [PMID: 32899626 PMCID: PMC7571138 DOI: 10.3390/molecules25184036] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it. Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs). Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects. PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation. The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.
Collapse
Affiliation(s)
- Seyed Alireza Salami
- Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria (PA), Italy;
| | - Ava Bachari
- School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia; (A.B.); (N.M.)
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia; (A.B.); (N.M.)
| |
Collapse
|
7
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
8
|
Uziel A, Gelfand A, Amsalem K, Berman P, Lewitus GM, Meiri D, Lewitus DY. Full-Spectrum Cannabis Extract Microdepots Support Controlled Release of Multiple Phytocannabinoids for Extended Therapeutic Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23707-23716. [PMID: 32369348 PMCID: PMC7467538 DOI: 10.1021/acsami.0c04435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The therapeutic effect of the Cannabis plant largely depends on the presence and specific ratio of a spectrum of phytocannabinoids. Although prescription of medicinal Cannabis for various conditions constantly grows, its consumption is mostly limited to oral or respiratory pathways, impeding its duration of action, bioavailability, and efficacy. Herein, a long-acting formulation in the form of melt-printed polymeric microdepots for full-spectrum cannabidiol (CBD)-rich extract administration is described. When injected subcutaneously in mice, the microdepots facilitate sustained release of the encapsulated extract over a two-week period. The prolonged delivery results in elevated serum levels of multiple, major and minor, phytocannabinoids for over 14 days, compared to Cannabis extract injection. A direct analysis of the microdepots retrieved from the injection site gives rise to an empirical model for the release kinetics of the phytocannabinoids as a function of their physical traits. As a proof of concept, we compare the long-term efficacy of a single administration of the microdepots to a single administration of Cannabis extract in a pentylenetetrazol-induced convulsion model. One week following administration, the microdepots reduce the incidence of tonic-clonic seizures by 40%, increase the survival rate by 50%, and the latency to first tonic-clonic seizures by 170%. These results suggest that a long-term full-spectrum Cannabis delivery system may provide new form of Cannabis administration and treatments.
Collapse
Affiliation(s)
- Almog Uziel
- Department
of Polymers and Plastics Engineering, Shenkar
College of Engineering, Design and Art, Ramat-Gan 52526, Israel
| | - Anat Gelfand
- The
Laboratory of Cancer Biology and Cannabinoid Research, Department
of Biology, Technion-Israel Institute of
Technology, Haifa 320003, Israel
| | - Keren Amsalem
- The
Laboratory of Cancer Biology and Cannabinoid Research, Department
of Biology, Technion-Israel Institute of
Technology, Haifa 320003, Israel
| | - Paula Berman
- The
Laboratory of Cancer Biology and Cannabinoid Research, Department
of Biology, Technion-Israel Institute of
Technology, Haifa 320003, Israel
| | - Gil M. Lewitus
- The
Laboratory of Cancer Biology and Cannabinoid Research, Department
of Biology, Technion-Israel Institute of
Technology, Haifa 320003, Israel
| | - David Meiri
- The
Laboratory of Cancer Biology and Cannabinoid Research, Department
of Biology, Technion-Israel Institute of
Technology, Haifa 320003, Israel
- (D.M.)
| | - Dan Y. Lewitus
- Department
of Polymers and Plastics Engineering, Shenkar
College of Engineering, Design and Art, Ramat-Gan 52526, Israel
- (D.Y.L.)
| |
Collapse
|
9
|
McClements DJ. Enhancing Efficacy, Performance, and Reliability of Cannabis Edibles: Insights from Lipid Bioavailability Studies. Annu Rev Food Sci Technol 2020; 11:45-70. [DOI: 10.1146/annurev-food-032519-051834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The legal sale of cannabis-enriched foods and beverages for medical or recreational purposes is increasing in many states and countries, especially in North America and Europe. These food-based cannabis delivery systems vary considerably in their compositions and structures, ranging from low-viscosity watery beverages to solid fatty chocolates. The rate and extent of release of the bioactive components in cannabis within the human gastrointestinal tract (GIT) affect their health and psychoactive effects. Studies with other types of hydrophobic bioactives, such as nutraceuticals and vitamins, have shown that food composition and structure have a major impact on their bioaccessibility, transformation, and absorption within the GIT, thereby influencing their bioavailability and bioactivity. This review outlines how insights on the bioavailability of other lipophilic bioactives can be used to facilitate the design of more efficacious and consistent cannabis-enriched products intended for oral consumption. In particular, the importance of food-matrix composition (such as fat type and level) and structural organization (such as fat domain dimensions) are discussed.
Collapse
|
10
|
Martín Giménez VM, Russo MG, Narda GE, Fuentes LB, Mazzei L, Gamarra-Luques C, Kassuha DE, Manucha W. Synthesis, physicochemical characterisation and biological activity of anandamide/ɛ-polycaprolactone nanoparticles obtained by electrospraying. IET Nanobiotechnol 2020; 14:86-93. [PMID: 31935683 PMCID: PMC8676047 DOI: 10.1049/iet-nbt.2019.0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Drug encapsulation in nanocarriers such as polymeric nanoparticles (Nps) may help to overcome the limitations associated with cannabinoids. In this study, the authors' work aimed to highlight the use of electrospraying techniques for the development of carrier Nps of anandamide (AEA), an endocannabinoid with attractive pharmacological effects but underestimated due to its unfavourable physicochemical and pharmacokinetic properties added to its undesirable effects at the level of the central nervous system. The authors characterised physicochemically and evaluated in vitro biological activity of anandamide/ɛ-polycaprolactone nanoparticles (Nps-AEA/PCL) obtained by electrospraying in epithelial cells of the human proximal tubule (HK2), to prove the utility of this method and to validate the biological effect of Nps-AEA/PCL. They obtained particles from 100 to 900 nm of diameter with a predominance of 200-400 nm. Their zeta potential was -20 ± 1.86 mV. They demonstrated the stable encapsulation of AEA in Nps-AEA/PCL, as well as its dose-dependent capacity to induce the expression of iNOS and NO levels and to decrease the Na+/K+ ATPase activity in HK2 cells. Obtaining Nps-AEA/PCL by electrospraying would represent a promising methodology for a novel AEA pharmaceutical formulation development with optimal physicochemical properties, physical stability and biological activity on HK2 cells.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Av. Ignacio de la Roza 1516 (o), 5400, San Juan, Argentina
| | - Marcos G Russo
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700HGC, San Luis, Argentina
| | - Griselda E Narda
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700HGC, San Luis, Argentina
| | - Lucía B Fuentes
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700HOJ, San Luis, Argentina
| | - Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80 - Parque General San Martín, Centro Universitario, M5500 Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Av. Ruiz Leal s/n - Parque Gral. San Martín, M5500 Mendoza, Argentina
| | - Diego E Kassuha
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Av. Ignacio de la Roza 1516 (o), 5400, San Juan, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80 - Parque General San Martín, Centro Universitario, M5500 Mendoza, Argentina.
| |
Collapse
|
11
|
Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chem Biol Interact 2018; 293:77-88. [PMID: 30040916 DOI: 10.1016/j.cbi.2018.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
The psychoactive property of cannabinoids is well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by its negative physiological activities. This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. We further highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer's disease, multiple sclerosis, pain, inflammation, glaucoma and many others. Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments of utilizing cannabinoids as therapeutic agents.
Collapse
Affiliation(s)
- Nancy Maurya
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | | |
Collapse
|
12
|
Attia MI, Eldehna WM, Afifi SA, Keeton AB, Piazza GA, Abdel-Aziz HA. New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS One 2017; 12:e0181241. [PMID: 28742842 PMCID: PMC5526551 DOI: 10.1371/journal.pone.0181241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/28/2017] [Indexed: 01/31/2023] Open
Abstract
The synthesis and molecular characterization of new isatin-based hydrazonoindolin-2-ones 4a-o and 7a-e are reported. The in vitro anti-proliferative potential of the synthesized compounds 4a-o and 7a-e was examined against HT-29 (colon), ZR-75 (breast) and A549 (lung) human cancer cell lines. Compounds 7b, 7d and 7e were the most active congeners against the tested human cancer cell lines with average IC50 values of 4.77, 3.39 and 2.37 μM, respectively, as compared with the reference isatin-based drug, sunitinib, which exhibited an average IC50 value of 8.11 μM. Compound 7e was selected for further pharmacological evaluation in order to gain insight into its possible mechanism of action. It increased caspase 3/7 activity by 2.4- and 1.85-fold between 4 and 8 h of treatment, respectively, at 10 μM and it caused a decrease in the percentage of cells in the G1 phase of the cell cycle with a corresponding increase in the S-phase. In addition, compound 7e increased phosphorylated tyrosine (p-Tyr) levels nearly two-fold with an apparent IC50 value of 3.8 μM. The 7e-loaded PLGA microspheres were prepared using a modified emulsion-solvent diffusion method. The average encapsulation efficiency of the 7e-loaded PLGA microspheres was 85% ± 1.3. While, the in vitro release profile of the 7e-loaded microspheres was characterized by slow and continuous release of compound 7e during 21 days and the release curve was fitted to zero order kinetics. Incorporation of 7e into PLGA microspheres improved its in vitro anti-proliferative activity toward the human cancer cell line A549 after 120 h incubation period with an IC50 value less than 0.8 μM.
Collapse
Affiliation(s)
- Mohamed I. Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samar A. Afifi
- Department of Pharmaceutics, National Organization for Drug Control and Research, Giza, Egypt
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adam B. Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
| | - Gary A. Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Res earch Centre, (ID: 60014618), Dokki, Giza, Egypt
| |
Collapse
|
13
|
Hommoss G, Pyo SM, Müller RH. Mucoadhesive tetrahydrocannabinol-loaded NLC - Formulation optimization and long-term physicochemical stability. Eur J Pharm Biopharm 2017; 117:408-417. [PMID: 28433786 DOI: 10.1016/j.ejpb.2017.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/12/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
Tetrahydrocannabinol (THC) is used to treat pain in cancer patients. On the market there are mainly oral formulations. Especially to treat the problematic breakthrough pain in cancer, an easy applicable formulation with fast onset is desired. This formulation was developed as an aqueous nasal spray using nanostructured lipid carriers (NLC). The NLC were prepared with cetyl palmitate, having good miscibility with the oily THC and yielding particles with 1year physical long-term stability. To make the particles mucoadhesive, small particles with diameters of about 200nm were produced and additionally their surface positively charged using a cationic stabilizer. Optimal NLC suspensions contained 1% particles (lipid:THC ratio 7:1) stabilized with 0.05% cetylpyridinium chloride (CPC), and 2% particles with a mixture of 0.05% CPC, and 0.05% Tween® 80. The particle size remained unchanged during spraying using commercial spray bottle, and PARI BOY. A strong interaction with negatively charged mucin was shown by a sharp decrease of the positive NLC zeta potential and fast charge reversal in the mucin solution test. The solid matrix of the NLC had a stabilizing effect on THC. 91% THC remained after 6months storage at 4°C, and 79% under stress conditions at 40°C. By adding additional chemical stabilizers, and producing under protective conditions, a commercial formulation for patient seems feasible.
Collapse
Affiliation(s)
- Ghaith Hommoss
- Freie Universität Berlin, Institute of Pharmacy - Pharmaceutics, Pharmaceutical Nanotechnology & NutriCosmetics, Kelchstr. 31, 12169 Berlin, Germany
| | - Sung Min Pyo
- Freie Universität Berlin, Institute of Pharmacy - Pharmaceutics, Pharmaceutical Nanotechnology & NutriCosmetics, Kelchstr. 31, 12169 Berlin, Germany.
| | - Rainer H Müller
- Freie Universität Berlin, Institute of Pharmacy - Pharmaceutics, Pharmaceutical Nanotechnology & NutriCosmetics, Kelchstr. 31, 12169 Berlin, Germany
| |
Collapse
|
14
|
MA CHAO, WU TINGTING, JIANG PUCHA, LI ZHIQIANG, CHEN XINJUN, FU KAI, WANG WEI, GONG RUI. Anti-carcinogenic activity of anandamide on human glioma in vitro and in vivo. Mol Med Rep 2016; 13:1558-62. [PMID: 26707955 PMCID: PMC4732848 DOI: 10.3892/mmr.2015.4721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 08/25/2015] [Indexed: 11/05/2022] Open
Abstract
The poor prognosis of gliomas is to a large extent attributed to the markedly proliferative and invasive nature of the disease. Endocannabinoids have emerged as novel potential anti-tumor agents. The present study aimed to investigate the anti-carcinogenic activity of anandamide (AEA), an endocannabinoid, on glioma cells. To assess the functional role of AEA in glioma, the effects of AEA on cell proliferation, migration, invasion, apoptosis and the cell cycle in vitro, and tumor growth in vivo, were investigated. AEA markedly inhibited the proliferation of U251 cells in a dose- and time-dependent manner. Flow cytometric assays revealed that the apoptosis rate of U251 cells upon treatment with AEA was increased. AEA also suppressed the adhesion, migration and invasion capabilities of the U251 cells. Furthermore, AEA inhibited tumor growth in vivo. These results highlighted the potential role of AEA in the tumorigenesis and progression of glioma, and suggested that AEA exhibits therapeutic potential in the management of human glioma.
Collapse
Affiliation(s)
- CHAO MA
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China,Correspondence to: Dr Chao Ma, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, P.R. China, E-mail:
| | - TING-TING WU
- Department of Otorhinolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - PU-CHA JIANG
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - ZHI-QIANG LI
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - XIN-JUN CHEN
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - KAI FU
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - WEI WANG
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - RUI GONG
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Martín-Banderas L, Muñoz-Rubio I, Prados J, Álvarez-Fuentes J, Calderón-Montaño JM, López-Lázaro M, Arias JL, Leiva MC, Holgado MA, Fernández-Arévalo M. In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. Int J Pharm 2015; 487:205-12. [PMID: 25899283 DOI: 10.1016/j.ijpharm.2015.04.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/29/2023]
Abstract
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈ 290 nm) increased upon coating with PEG, CS, and PEG-CS up to ≈ 590 nm, ≈ 745 nm, and ≈ 790 nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈ 95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ(9)-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.
Collapse
Affiliation(s)
- L Martín-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - I Muñoz-Rubio
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - J Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain
| | - J Álvarez-Fuentes
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - J M Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - J L Arias
- Biosanitary Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - M C Leiva
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain
| | - M A Holgado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M Fernández-Arévalo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|