1
|
Huang L, Huang XH, Yang X, Hu JQ, Zhu YZ, Yan PY, Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201:107100. [PMID: 38341055 DOI: 10.1016/j.phrs.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xue-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kumar P, Yadav N, Chaudhary B, Umakanthan S, Chattu VK, Kazmi I, Al-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA, Gupta G, Gupta MM. Lipid Nanocapsule: A Novel Approach to Drug Delivery System Formulation Development. Curr Pharm Biotechnol 2024; 25:268-284. [PMID: 37231750 DOI: 10.2174/1389201024666230523114350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 05/27/2023]
Abstract
Nanocapsules are polymeric nanoparticles encased in a polymeric coating composed of a predominantly non-ionic surfactant, macromolecules, phospholipids, and an oil core. Lipophilic drugs have been entrapped using various nanocarriers, including lipid cores, likely lipid nanocapsules, solid lipid nanoparticles, and others. A phase inversion temperature approach is used to create lipid nanocapsules. The PEG (polyethyleneglycol) is primarily utilised to produce nanocapsules and is a critical parameter influencing capsule residence time. With their broad drug-loading features, lipid nanocapsules have a distinct advantage in drug delivery systems, such as the capacity to encapsulate hydrophilic or lipophilic pharmaceuticals. Lipid nanocapsules, as detailed in this review, are surface modified, contain target-specific patterns, and have stable physical and chemical properties. Furthermore, lipid nanocapsules have target-specific delivery and are commonly employed as a marker in the diagnosis of numerous illnesses. This review focuses on nanocapsule synthesis, characterisation, and application, which will help understand the unique features of nanocapsules and their application in drug delivery systems.
Collapse
Affiliation(s)
- Parveen Kumar
- Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Nishant Yadav
- B. S. Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Benu Chaudhary
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Srikant Umakanthan
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, WI
| | - Vijay K Chattu
- Department of OS & OT, Temerty Faculty of Medicine, University of Toronto, ON M5G 1V7, Canada
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Center for Technology and Innovations, Global Health Research and Innovations Canada Inc. (GHRIC), ON, Toronto, Canada
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Madan M Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
3
|
Ferreira M, Costa D, Sousa Â. Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering (Basel) 2022; 9:197. [PMID: 35621475 PMCID: PMC9137930 DOI: 10.3390/bioengineering9050197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.
Collapse
Affiliation(s)
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
4
|
Sun R, Xia N, Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1635027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Nan Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Xia N, Liu T, Wang Q, Xia Q, Bian X. In vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery. J Microencapsul 2017; 34:571-581. [PMID: 28830289 DOI: 10.1080/02652048.2017.1367852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aimed at in vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery, which was prepared by hot high-pressure homogenisation. Stable particles could be formed and particle size was 148.54 ± 2.31 nm with polydispersity index below 0.15. Encapsulation efficiency and drug loading of α-lipoic acid were 95.23 ± 0.45% and 2.81 ± 0.37%. Antioxidant study showed α-lipoic acid could be protected by lipid nanocapsules without loss of antioxidant activity. Sustained release of α-lipoic acid from lipid nanocapsules was obtained and cumulative release was 62.18 ± 1.51%. In vitro percutaneous study showed the amount of α-lipoic acid distributed in skin was 1.7-fold than permeated. Cytotoxicity assay and antioxidant activity on L929 cells indicated this formulation had low cytotoxicity and ability of protecting cells from oxidative damage within specific concentration. These studies suggested α-lipoic acid-loaded lipid nanocapsules could be potential formulation for topical delivery.
Collapse
Affiliation(s)
- Nan Xia
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Tian Liu
- b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,d Department of Pharmacy, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| | - Qiang Wang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Qiang Xia
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Xiaoli Bian
- d Department of Pharmacy, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
6
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
7
|
Yu J, Liu Y, Zhang L, Zhao J, Ren J, Zhang L, Jin Y. Self-aggregated nanoparticles of linoleic acid-modified glycol chitosan conjugate as delivery vehicles for paclitaxel: preparation, characterization and evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1475-89. [DOI: 10.1080/09205063.2015.1101259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Du H, Liu M, Yang X, Zhai G. The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates. J Colloid Interface Sci 2015; 460:87-96. [PMID: 26319324 DOI: 10.1016/j.jcis.2015.08.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 11/24/2022]
Abstract
Quercetin (QC), a type of plant-based chemical, has been reported to own anticancer activity in vivo. However, the poor water solubility limits its pharmaceutical application. In this study, two kinds of QC-loaded self-aggregates based on O-carboxymethyl chitosan-cholic acid conjugates (CMCA) were developed to improve the drug bioavailability in which glycyrrhetinic acid (GA) modification was utilized in the nanocarrier fabrication (QC-GA-CMCA) or not (QC-CMCA). These self-aggregates were prepared by a modified ultrasound-dialysis method and the role of GA modification on the evaluation of QC-loaded self-aggregates was investigated. Transmission Electron Microscopy (TEM) images revealed the formation of spherical particles of both self-aggregates. Dynamic Light Scattering (DLS) analysis and UV-VIS spectroscopy showed that the QC-GA-CMCA had smaller size, narrower size distribution, higher drug loading and entrapment efficiency than corresponding QC-CMCA aggregates. QC-GA-CMCA showed more obvious sensitivity to acidic pH condition based on the zeta potential measurements at various pHs, and fastest drug release was observed at pH 5.7 for QC-CMCA while at pH 6.5 for QC-GA-CMCA. In addition, QC-GA-CMCA demonstrated enhanced cell cytotoxicity and higher cell apoptosis rate in vitro, and also higher AUC value and a prolonged residence time of drug in vivo.
Collapse
Affiliation(s)
- Hongliang Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Mengrui Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
9
|
Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci 2015; 221:60-76. [PMID: 25999266 DOI: 10.1016/j.cis.2015.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/16/2022]
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years with a recent increase in popularity. Despite promising biological activities of active ingredients and fractions from TCM, their poor solubility, poor stability, short biological half-life, ease of metabolism and rapid elimination hinder their clinical application. Therefore, overcoming these problems to improve the therapeutic efficacy of TCM preparations is a major focus of pharmaceutical sciences. Recently, nanocarriers have drawn increasing attention for their excellent and efficient delivery of active TCM ingredients or fractions. This review discusses problems in the delivery of active TCM ingredients or fractions; focuses on recent advances in nanocarriers that represent potential solutions to these problems, including lipid-based nanoparticles and polymeric, inorganic, and hybrid nanocarriers; and discusses unanswered questions in the field and criteria for the development of better nanocarriers for the delivery of active TCM ingredients or fractions to be focused on in future studies.
Collapse
|
10
|
Maciej J, Schäff CT, Kanitz E, Tuchscherer A, Bruckmaier RM, Wolffram S, Hammon HM. Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin. J Dairy Sci 2015; 98:3906-17. [PMID: 25795488 PMCID: PMC7094564 DOI: 10.3168/jds.2015-9361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyphenols, such as flavonoids, are secondary plant metabolites with potentially health-promoting properties. In newborn calves flavonoids may improve health status, but little is known about the systemically availability of flavonoids in calves to exert biological effects. The aim of this study was to investigate the oral bioavailability of the flavonol quercetin, applied either as quercetin aglycone (QA) or as its glucorhamnoside rutin (RU), in newborn dairy calves. Twenty-one male newborn German Holstein calves were fed equal amounts of colostrum and milk replacer according to body weight. On d 2 and 29 of life, 9 mg of quercetin equivalents/kg of body weight, either fed as QA or as RU, or no quercetin (control group) were fed together with the morning meal. Blood samples were taken before and 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 12, 24, and 48 h after feed intake. Quercetin and quercetin metabolites with an intact flavonol structure (isorhamnetin, tamarixetin, and kaempferol) were analyzed in blood plasma after treatment with glucuronidase or sulfatase by HPLC with fluorescence detection. Maximum individual plasma concentration was depicted from the concentration-time-curve on d 2 and 29, respectively. Additional blood samples were taken to measure basal plasma concentrations of total protein, albumin, urea, and lactate as well as pre- and postprandial plasma concentrations of glucose, nonesterified fatty acids, insulin, and cortisol. Plasma concentrations of quercetin and its metabolites were significantly higher on d 2 than on d 29 of life, and administration of QA resulted in higher plasma concentrations of quercetin and its metabolites than RU. The relative bioavailability of total flavonols (sum of quercetin and its metabolites isorhamnetin, tamarixetin, and kaempferol) from RU was 72.5% on d 2 and 49.6% on d 29 when compared with QA (100%). Calves fed QA reached maximum plasma concentrations of total flavonols much earlier than did RU-fed calves. Plasma metabolites and hormones were barely affected by QA and RU feeding in this experiment. Taken together, orally administrated QA resulted in a greater bioavailability of quercetin than RU on d 2 and 29, respectively, and quercetin bioavailability of quercetin and its metabolites differed markedly between calves aged 2 and 29 d.
Collapse
Affiliation(s)
- J Maciej
- Institute of Nutritional Physiology "Oskar Kellner,", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C T Schäff
- Institute of Nutritional Physiology "Oskar Kellner,", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - S Wolffram
- Institute of Animal Nutrition and Physiology, Christian Albrechts University Kiel, 24118 Kiel, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner,", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|