1
|
Zhang Q, Tian Y, Yang Y, Huang Q, Feng H, Zeng R, Li S. A bioinspired supramolecular nanoprodrug for precision therapy of B-cell non-Hodgkin's lymphoma. J Nanobiotechnology 2024; 22:475. [PMID: 39127737 DOI: 10.1186/s12951-024-02745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Fludarabine (FA) is still considered as a first-line chemotherapy drug for hematological tumors related to B lymphocytes. However, it is worth noting that the non-specific distribution and non-different cytotoxicity of FA may lead to irreversible consequences such as central nervous system damage such as blindness, coma, and even death. Therefore, it is very important to develop a system to targeting delivery FA. In preliminary studies, it was found that B lymphoma cells would specific highly expressing the sialic acid-binding immunoglobulin-like lectin 2 (known as CD22). Inspired by the specific recognition of sialic acid residues and CD22, we have developed a supramolecular prodrug based on polysialic acid, an endogenous biomacromolecule, achieving targeted-therapy of B-cell non-Hodgkin's lymphoma (B-NHL). Specifically, the prepared hydrophobic reactive oxygen species-responsive FA dimeric prodrug (F2A) interacts with the TPSA, which polysialic acid were modified by the thymidine derivatives, through non-covalent intermolecular interactions similar to "Watson-Crick" base pairing, resulting in the formation of nanoscale supramolecular prodrug (F@TPSA). Cell experiments have confirmed that F@TPSA can be endocytosed by CD22+ B lymphoma cells including Raji and Ramos cells, and there is a significant difference of endocytosis in other leukocytes. Furthermore, in B-NHL mouse model, compared with FA, F@TPSA is determined to have a stronger tumor targeting and inhibitory effect. More importantly, the distribution of F@TPSA in vivo tends to be enriched in lymphoma tissue rather than nonspecific, thus reducing the leukopenia of FA. The targeted delivery system based on PSA provides a new prodrug modification strategy for targeted treatment of B-NHL.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Qiuying Huang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Polysialylated nanoinducer for precisely enhancing apoptosis and anti-tumor immune response in B-cell lymphoma. Acta Biomater 2022; 149:321-333. [PMID: 35779772 DOI: 10.1016/j.actbio.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: • Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. • SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. • Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. • "Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.
Collapse
|
4
|
Arora B, Yoon A, Sriram M, Singha P, Rizvi SS. Reactive extrusion: A review of the physicochemical changes in food systems. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Kim B, Shin J, Kiziltepe T, Bilgicer B. Identification of a moderate affinity CD22 binding peptide and in vitro optimization of peptide-targeted nanoparticles for selective uptake by CD22+ B-cell malignancies. NANOSCALE 2020; 12:11672-11683. [PMID: 32436925 DOI: 10.1039/d0nr02133d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
B cell malignancies, such as B cell leukemia and lymphoma, have CD22 overexpression with ∼7% of patients. A short CD22 binding peptide (PV3) with a moderate affinity (Kd ∼ 9 μM) was identified by screening multiple peptide candidates determined through analysis of CD22-epratuzumab complex crystal structure. PV3 binding specificity was confirmed via competitive binding inhibition, then was used as the targeting moiety on CD22-targeted liposomal nanoparticle (TNPPV3) formulations. To maximize the potential therapeutic outcome of TNPPV3 formulation, nanoparticle design parameters, such as peptide hydrophilicity, ethylene glycol linker length, valency, and particle size were optimized for maximum selective cellular uptake by CD22+ malignant cancer cells. The effects of altering design parameters one at a time on TNP uptake were evaluated using flow cytometry, and the optimal parameters for TNPPV3 were determined to be 8% peptide density, EG18 linker, and 3 lysines of 100 nm nanoparticles. This optimally designed TNPPV3 achieved ∼4 and 40-fold enhancement of cellular uptake by CD22+ Raji cells over CD22- Jurkat and MOLT-4 cells, respectively, demonstrating selectivity for malignant cells with CD22 overexpression. Overall, this study establishes PV3 to be CD22 binding peptide with proven effectiveness as a targeting element. In future, the optimal TNPPV3 formulation will potentially achieve maximal in vivo therapeutic outcomes by efficiently targeting CD22+ blood cancer cells in vivo.
Collapse
Affiliation(s)
- Baksun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jaeho Shin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tanyel Kiziltepe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA and Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA and Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Ghosh S, Lalani R, Patel V, Bardoliwala D, Maiti K, Banerjee S, Bhowmick S, Misra A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. J Control Release 2019; 296:114-139. [DOI: 10.1016/j.jconrel.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|
7
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
8
|
Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies. Pharmaceutics 2018; 10:pharmaceutics10020050. [PMID: 29662041 PMCID: PMC6027244 DOI: 10.3390/pharmaceutics10020050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin cardiotoxicity has led to the development of superior chemotherapeutic agents such as AD 198. However, depletion of healthy neutrophils and thrombocytes from AD 198 therapy must be limited. This can be done by the development of a targeted drug delivery system that delivers AD 198 to the malignant cells. The current research highlights the development and in vitro analysis of targeted liposomes containing AD 198. The best lipids were identified and optimized for physicochemical effects on the liposomal system. Physiochemical characteristics such as size, ζ-potential, and dissolution were also studied. Active targeting to CD22 positive cells was achieved by conjugating anti-CD22 Fab’ to the liposomal surface. Size and ζ-potential of the liposomes was between 115 and 145 nm, and −8 to−15 mV. 30% drug was released over 72 h. Higher cytotoxicity was observed in CD22+ve Daudi cells compared to CD22−ve Jurkat cells. The route of uptake was a clathrin- and caveolin-independent pathway. Intracellular localization of the liposomes was in the endolysosomes. Upon drug release, apoptotic pathways were activated partly by the regulation of apoptotic and oncoproteins such as caspase-3 and c-myc. It was observed that the CD22 targeted drug delivery system was more potent and specific compared to other untargeted formulations.
Collapse
|
9
|
Accardo A, Morelli G. Review peptide-targeted liposomes for selective drug delivery: Advantages and problematic issues. Biopolymers 2015; 104:462-79. [DOI: 10.1002/bip.22678] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Antonella Accardo
- Department of Pharmacy; CIRPeB, University of Naples “Federico II” and Invectors srl; 80134 Napoli Italy
| | - Giancarlo Morelli
- Department of Pharmacy; CIRPeB, University of Naples “Federico II” and Invectors srl; 80134 Napoli Italy
| |
Collapse
|
10
|
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869269. [PMID: 25136634 PMCID: PMC4127280 DOI: 10.1155/2014/869269] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|