1
|
Silva JDPD, Ballejo G. Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. EINSTEIN-SAO PAULO 2019; 17:eAO4600. [PMID: 31166411 PMCID: PMC6550436 DOI: 10.31744/einstein_journal/2019ao4600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 12/20/2018] [Indexed: 11/06/2022] Open
Abstract
Objective: To characterize the calcium influx pathways implicated in the sustained elevation of endothelial intracellular calcium concentration, required for the synthesis and release of relaxing factors. Methods: We evaluated the effect of the newly synthesized pyrazole derivatives, described as selective inhibitors for ORAI (BTP2/Pyr2 and Pyr6) and TRPC3 (Pyr3 and Pyr10) channels, upon endothelium- and extracellular calcium-dependent relaxations stimulated by acetylcholine and thapsigargin, in pre-constricted rat thoracic aortic rings. Results: Acetylcholine and thapsigargin responses were completely reverted by Pyr2 and Pyr6 (1 to 3μM). Pyr3 (0.3 to 3μM) caused a rapid reversal of acetylcholine (6.2±0.08mg.s−1) and thapsigargin (3.9±0.25mg.s−1) relaxations, whereas the more selective TRPC3 blocker Pyr10 (1 to 3μM) had no effect. The recently described TRPC4/5 selective blocker, ML204 (1 to 3μM), reverted completely acetylcholine relaxations, but minimally thapsigargin induced ones. Noteworthy, relaxations elicited by GSK1016790A (TRPV4 agonist) were unaffected by pyrazole compounds or ML204. After Pyr2 and Pyr6 pre-incubation, acetylcholine and thapsigargin evoked transient relaxations similar in magnitude and kinetics to those observed in the absence of extracellular calcium. Sodium nitroprusside relaxations as well as phenylephrine-induced contractions (denuded aorta) were not affected by any of pyrazole compounds (1 to 3μM). Conclusion: These observations revealed a previously unrecognized complexity in rat aorta endothelial calcium influx pathways, which result in production and release of nitric oxide. Pharmacologically distinguishable pathways mediate acetylcholine (ORAI/TRPC other than TRPC3/TRPC4 calcium-permeable channels) and thapsigargin (TRPC4 not required) induced calcium influx.
Collapse
Affiliation(s)
| | - Gustavo Ballejo
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Deak AT, Groschner LN, Alam MR, Seles E, Bondarenko AI, Graier WF, Malli R. The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction. J Cell Sci 2012; 126:879-88. [PMID: 23239024 DOI: 10.1242/jcs.118075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endocannabiniod anandamide (AEA) and its derivate N-arachidonoyl glycine (NAGly) have a broad spectrum of physiological effects, which are induced by both binding to receptors and receptor-independent modulations of ion channels and transporters. The impact of AEA and NAGly on store-operated Ca(2+) entry (SOCE), a ubiquitous Ca(2+) entry pathway regulating many cellular functions, is unknown. Here we show that NAGly, but not AEA reversibly hinders SOCE in a time- and concentration-dependent manner. The inhibitory effect of NAGly on SOCE was found in the human endothelial cell line EA.hy926, the rat pancreatic β-cell line INS-1 832/13, and the rat basophilic leukemia cell line RBL-2H3. NAGly diminished SOCE independently from the mode of Ca(2+) depletion of the endoplasmic reticulum, whereas it had no effect on Ca(2+) entry through L-type voltage-gated Ca(2+) channels. Enhanced Ca(2+) entry was effectively hampered by NAGly in cells overexpressing the key molecular constituents of SOCE, stromal interacting molecule 1 (STIM1) and the pore-forming subunit of SOCE channels, Orai1. Fluorescence microscopy revealed that NAGly did not affect STIM1 oligomerization, STIM1 clustering, or the colocalization of STIM1 with Orai1, which were induced by Ca(2+) depletion of the endoplasmic reticulum. In contrast, independently from its slow depolarizing effect on mitochondria, NAGly instantly and strongly diminished the interaction of STIM1 with Orai1, indicating that NAGly inhibits SOCE primarily by uncoupling STIM1 from Orai1. In summary, our findings revealed the STIM1-Orai1-mediated SOCE machinery as a molecular target of NAGly, which might have many implications in cell physiology.
Collapse
Affiliation(s)
- Andras T Deak
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
3
|
Girardin NC, Antigny F, Frieden M. Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells. Pflugers Arch 2010; 460:109-20. [PMID: 20419508 DOI: 10.1007/s00424-010-0825-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/24/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
In endothelial cells, agonist-induced Ca(2+) entry takes place via the store-operated Ca(2+) entry pathway and/or via channel(s) gated by second messengers. As cell stimulation leads to both a partial Ca(2+) store depletion as well as the production of second messengers, these two pathways are problematic to distinguish. We showed that passive endoplasmic reticulum (ER) depletion by thapsigargin or cell stimulation by histamine activated a similar Ca(2+)-release-activated Ca(2+) current (CRAC)-like current when 10 mM Ba(2+)/2 mM Ca(2+) was present in the extracellular solution. Importantly, during voltage clamp recordings, histamine stimulation largely depleted the ER Ca(2+) store, explaining the activation of a CRAC-like current (due to store depletion) upon histamine in Ba(2+) medium. On the contrary, in the presence of 10 mM Ca(2+), the ER Ca(2+) content remained elevated, and histamine induced an outward rectifying current that was inhibited by Ni(2+) and KB-R7943, two blockers of the Na(+)/Ca(2+) exchanger (NCX). Both blockers also reduced histamine-induced cytosolic Ca(2+) elevation. In addition, removing extracellular Na(+) increased the current amplitude which is in line with a current supported by the NCX. These data are consistent with the involvement of the NCX working in reverse mode (Na(+) out/Ca(2+) in) during agonist-induced Ca(2+) entry in endothelial cells.
Collapse
Affiliation(s)
- Nathalie C Girardin
- Department of Cell Physiology and Metabolism, Geneva Medical Center, University of Geneva Medical School, 1, rue Michel Servet, 1211, Geneva 4, Switzerland
| | | | | |
Collapse
|
4
|
Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF. Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 2008; 121:1704-1717. [PMID: 18445684 PMCID: PMC4067516 DOI: 10.1242/jcs.020958] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although the endocannabinoid anandamide is frequently described to act predominantly in the cardiovascular system, the molecular mechanisms of its signaling remained unclear. In human endothelial cells, two receptors for anandamide were found, which were characterized as cannabinoid 1 receptor (CB1R; CNR1) and G-protein-coupled receptor 55 (GPR55). Both receptors trigger distinct signaling pathways. It crucially depends on the activation status of integrins which signaling cascade becomes promoted upon anandamide stimulation. Under conditions of inactive integrins, anandamide initiates CB1R-derived signaling, including Gi-protein-mediated activation of spleen tyrosine kinase (Syk), resulting in NFkappaB translocation. Furthermore, Syk inhibits phosphoinositide 3-kinase (PI3K) that represents a key protein in the transduction of GPR55-originated signaling. However, once integrins are clustered, CB1R splits from integrins and, thus, Syk cannot further inhibit GPR55-triggered signaling resulting in intracellular Ca2+ mobilization from the endoplasmic reticulum (ER) via a PI3K-Bmx-phospholipase C (PLC) pathway and activation of nuclear factor of activated T-cells. Altogether, these data demonstrate that the physiological effects of anandamide on endothelial cells depend on the status of integrin clustering.
Collapse
Affiliation(s)
| | - Cristina Zoratti
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Karin Osibow
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Nariman Balenga
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Edith Goessnitzer
- Institute of Pharmaceutical Chemistry, University Graz, Graz Austria
| | - Maria Waldhoer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| |
Collapse
|
5
|
Jousset H, Malli R, Girardin N, Graier W, Demaurex N, Frieden M. Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2) store depletion in endothelial cells. Cell Calcium 2007; 43:83-94. [PMID: 17548108 PMCID: PMC6786894 DOI: 10.1016/j.ceca.2007.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/28/2007] [Accepted: 04/05/2007] [Indexed: 11/18/2022]
Abstract
Ca(2+) entry in endothelial cells is a key signaling event as it prolongs the Ca(2+) signal activated by a receptor agonist, and thus allows an adequate production of a variety of compounds. The possible routes that lead to Ca(2+) entry in non-excitable cells include the receptor-activated Ca(2+) entry (RACE), which requires the presence of an agonist to be activated, and the store-operated Ca(2+) entry (SOCE) pathway, whose activation requires the depletion of the ER Ca(2+) store. However, the relative importance of these two influx pathways during physiological stimulation is not known. In the present study we experimentally differentiated these two types of influxes and determined under which circumstances they are activated. We show that La(3+) (at 10 microM) is a discriminating compound that efficiently blocks SOCE but is almost without effect on histamine-induced Ca(2+) entry (RACE). In line with this, histamine does not induce massive store depletion when performed in the presence of extracellular Ca(2+). In addition, inhibition of mitochondrial respiration significantly reduces SOCE but modestly affects RACE. Thus, agonist-induced Ca(2+) entry is insensitive to La(3+), and only modestly affected by mitochondrial depolarization. These data shows that agonist relies almost exclusively on RACE for sustained Ca(2+) signaling in endothelial cells.
Collapse
Affiliation(s)
- H. Jousset
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - R. Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - N. Girardin
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - W.F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - N. Demaurex
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - M. Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
- Corresponding author at: Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 5198; fax: +41 22 379 5338. (M. Frieden)
| |
Collapse
|
6
|
Malli R, Frieden M, Osibow K, Graier WF. Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 2003; 278:10807-15. [PMID: 12529366 DOI: 10.1074/jbc.m212971200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In endothelial cells, local Ca(2+) release from superficial endoplasmic reticulum (ER) activates BK(Ca) channels. The resulting hyperpolarization promotes capacitative Ca(2+) entry (CCE), which, unlike BK(Ca) channels, is inhibited by high Ca(2+). To understand how the coordinated activation of plasma membrane ion channels with opposite Ca(2+) sensitivity is orchestrated, the individual contribution of mitochondria and ER in regulation of subplasmalemmal Ca(2+) concentration ([Ca(2+)](pm)) was investigated. For organelle visualization, cells were transfected with DsRed and yellow cameleon targeted to mitochondria and ER. The patch pipette was placed far from any organelle (L1), close to ER (L3), or mitochondria (L2) and activity of BK(Ca) channels was used to estimate local [Ca(2+)](pm). Under standard patch conditions (130 mm K(+) in the bath), histamine increased [Ca(2+)](pm) at L1 and L3 to approximately 1.6 microm, whereas close to mitochondria [Ca(2+)](pm) remained unchanged. If mitochondria moved apart from the pipette or in the presence of carbonyl cyanide-4-trifluoromethoxyphenylhyrazone, [Ca(2+)](pm) at L2 increased in response to histamine. Under standard patch conditions Ca(2+) entry was negligible due to cell depolarization. Using a physiological patch approach (5.6 mm K(+) in the bath), changes in [Ca(2+)](pm) to histamine could be monitored without cell depolarization and, thus, in conditions where Ca(2+) entry occurred. Here, histamine induced an initial transient Ca(2+) elevation to > or =3.5 microm followed by a long lasting plateau at approximately 1.2 microm in L1 and L3, whereas mitochondria kept neighboring [Ca(2+)](pm) low during stimulation. Thus, superficial mitochondria and ER generate local domains of low and high Ca(2+) allowing simultaneous activation of BK(Ca) and CCE, despite their opposite Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Roland Malli
- Department of Medical Biochemistry & Medical Molecular Biology, University of Graz, Austria
| | | | | | | |
Collapse
|
7
|
Frieden M, Malli R, Samardzija M, Demaurex N, Graier WF. Subplasmalemmal endoplasmic reticulum controls K(Ca) channel activity upon stimulation with a moderate histamine concentration in a human umbilical vein endothelial cell line. J Physiol 2002; 540:73-84. [PMID: 11927670 PMCID: PMC2290214 DOI: 10.1113/jphysiol.2002.017053] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study was designed to elucidate the role of the subplasmalemmal endoplasmic reticulum (sER) in autacoid-induced stimulation of Ca(2+)-dependent K(+) channels in the umbilical vein endothelial cell-derived cell line EA.hy926. Cells were transfected with the Ca(2+) probe cameleon targeted to the ER for visualization of the ER network. A patch pipette was then placed close to or far (> 5 microm away) from the sER, single channel recordings (patch clamp technique) were monitored simultaneously with measurements of either ER Ca(2+) concentration (using the Ca(2+) probe Cam4-ER) or cytosolic free Ca(2+) concentration ([Ca(2+)](i); using fura-2) using a deconvolution imaging device. A voltage-dependent, large conductance Ca(2+)-dependent K(+) channel (BK(Ca); single channel conductance (gamma), 250 pS) was found. At membrane potentials of +40 and -40 mV, the EC(50) for Ca(2+) was 2.7 and 49.7 microM, respectively. In the vicinity of the sER, the BK(Ca) channel activity induced by 10 microM histamine was 32 times higher (open probability (P(o)) = 0.083 +/- 0.026) than in areas away from the sER (P(o) = 0.0026 +/- 0.002). However, at supramaximal histamine stimulation (100 microM), BK(Ca) channel activation was similar in patches in the vicinity of or away from the sER (P(o) = 0.18 +/- 0.09 and 0.25 +/- 0.07, respectively). In contrast to BK(Ca) channel activity, ER Ca(2+) depletion (Cam4-ER) and elevation of [Ca(2+)](i) in response to 10 and 100 microM histamine were not influenced by the pipette position. We conclude that in endothelial cells, the activation of BK(Ca) channels in response to moderate histamine concentration essentially depends on the proximity of the sER domains to the mouth of this K(+) channel. These findings further support our concept of the subplasmalemmal Ca(2+) control unit (SCCU) and add the local activation of Ca(2+)-activated K(+)-channels to the function of the SCCU.
Collapse
Affiliation(s)
- Maud Frieden
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens University of Graz, Harrachgasse 21/III, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
8
|
Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 2002; 135:1579-87. [PMID: 11906973 PMCID: PMC1573266 DOI: 10.1038/sj.bjp.0704603] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
1. The present study investigates the mechanisms by which polyphenolic compounds from red wine elicit Ca(2+) mobilization in bovine aortic endothelial cells (BAECs). Two polyphenol-containing red wine extracts, red wine polyphenolic compounds (RWPC) and Provinols, and delphinidin, an anthocyanin were used. 2. RWPC stimulated a Ca(2+)-dependent release of nitric oxide (NO) from BAECs accounting for the relaxation of endothelium-denuded rat aortic rings as shown by cascade bioassay. 3. RWPC, Provinols and delphinidin increased cytosolic free calcium ([Ca(2+)](i)), by releasing Ca(2+) from intracellular stores and by increasing Ca(2+) entry. 4. The RWPC-induced increase in [Ca(2+)](i) was decreased by exposure to ryanodine (30 microM), whereas Provinols and delphinidin-induced increases in [Ca(2+)](i) were decreased by bradykinin (0.1 microM) and thapsigargin (1 microM) pre-treatment. 5. RWPC, Provinols and delphinidin-induced increases in [Ca(2+)](i) were sensitive to inhibitors of phospholipase C (neomycin, 3 mM; U73122, 3 microM) and tyrosine kinase (herbimycin A, 1 microM). 6. RWPC, Provinols and delphinidin induced herbimycin A (1 microM)-sensitive tyrosine phosphorylation of several intracellular proteins. 7. Provinols released Ca(2+) via both a cholera (CTX) and pertussis toxins (PTX)-sensitive pathway, whereas delphinidin released Ca(2+) only via a PTX-sensitive mechanism. 8. Our data contribute in defining the mechanisms of endothelial NO production caused by wine polyphenols including the increase in [Ca(2+)](i) and the activation of tyrosine kinases. Furthermore, RWPC, Provinols and delphinidin display differences in the process leading to [Ca(2+)](i) increases in endothelial cells illustrating multiple cellular targets of natural dietary polyphenolic compounds.
Collapse
Affiliation(s)
- Sophie Martin
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
| | - Emile Andriambeloson
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
| | - Ken Takeda
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
| | - Ramaroson Andriantsitohaina
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
- Author for correspondence:
| |
Collapse
|
9
|
Bowles DK, Graier WF, Sturek M. Hydrogen peroxide activates Na(+)-dependent Ca(2+) influx in coronary endothelial cells. Biochem Biophys Res Commun 2001; 287:1134-9. [PMID: 11587541 DOI: 10.1006/bbrc.2001.5714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the effect of short duration H(2)O(2) exposure on coronary artery endothelial cell [Ca(2+)](i) regulation. Freshly dispersed cells from porcine coronary artery were exposed to H(2)O(2) (300 micromol/L) for 3 min while monitoring [Ca(2+)](i) using fura-2 microfluorometry. H(2)O(2) increased [Ca(2+)](i) from 0.86 +/- 0.03 to 2.19 +/- 0.41 ratio units at 3 min of H(2)O(2) (P < 0.05). Intracellular Ca(2+) remained elevated 3 min following removal of H(2)O(2), yet H(2)O(2) had no effect on the subsequent [Ca(2+)](i) response to bradykinin (0.1 micromol/L). The H(2)O(2)-induced [Ca(2+)](i) increase was completely abolished either by removal of extracellular Ca(2+) or lowering extracellular Na(+). Cells exposed to the Na(+) ionophore, monensin, showed an increase in [Ca(2+)](i) with a time course similar to that seen with H(2)O(2). Furthermore, H(2)O(2)-induced Ca(2+) influx was not attenuated by either Ni(2+) (300 micromol/L) or econazole (10 micromol/L), excluding Ca(2+) influx via the agonist-sensitive pathway. Thus, in coronary arterial endothelial cells, H(2)O(2) increases Ca(2+) influx in an extracellular Na(+)-dependent manner via an agonist-insensitive pathway.
Collapse
Affiliation(s)
- D K Bowles
- Vascular Biology Laboratory, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
10
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
11
|
Alvarez de Sotomayor M, Andriantsitohaina R. Simvastatin and Ca(2+) signaling in endothelial cells: involvement of rho protein. Biochem Biophys Res Commun 2001; 280:486-90. [PMID: 11162544 DOI: 10.1006/bbrc.2000.4144] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor simvastatin is able to produce endothelium-dependent relaxation in addition to its lipid-lowering properties. The underlying mechanisms were investigated in bovine aortic endothelial cells (BAEC). Simvastatin induced an increase in cytosolic calcium ([Ca(2+)](i)) in BAEC, by releasing Ca(2+) from intracellular stores sensitive to thapsigargin and ryanodine, and increasing Ca(2+) entry. Simvastatin response was not altered by the phospholipase A(2) inhibitor ONO-RS-082, or the combination of superoxide dismutase plus catalase. However, the response to simvastatin was reduced by the product of HMG-CoA reductase, mevalonate or by the inhibitor of small G proteins of the Rho family, Clostridium botulinum C3 toxin. Thus, increase in [Ca(2+)](i) involving the activation of Rho protein through mevalonate-dependent pathway is essential for the action of simvastatin and might contribute to its beneficial effects against vascular diseases. This study helps elucidate the mechanisms of endothelial factor generation by simvastatin in BAEC.
Collapse
Affiliation(s)
- M Alvarez de Sotomayor
- Departamento de Farmacología, Facultad of Farmacia, Universidad de Sevilla, Seville, 41012, Spain
| | | |
Collapse
|
12
|
Paltauf-Doburzynska J, Frieden M, Spitaler M, Graier WF. Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol 2000; 524 Pt 3:701-13. [PMID: 10790152 PMCID: PMC2269898 DOI: 10.1111/j.1469-7793.2000.00701.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Using single cell microfluorometry to monitor changes in bulk Ca2+ concentration ([Ca2+]bulk) and the whole-cell configuration of the patch clamp technique to measure K+ currents (voltage clamp) and membrane potential (current clamp), the mechanisms of histamine-induced Ca2+ oscillations in the umbilical vein endothelial cell-derived cell line EA.hy926 were studied. In single cells, histamine (10 microM) evoked sinusoidal Ca2+ oscillations in low extracellular Ca2+ concentrations ([Ca2+]o = 10-30 microM). In contrast, histamine did not initiate Ca2+ oscillations either in the absence of extracellular Ca2+ (10 microM EGTA) or in the presence of 2.5 mM extracellular Ca2+. Ca2+ oscillations were accompanied by rhythmic activation of Ca2+-activated K+ (KCa) channels and membrane hyperpolarization of 18.1 +/- 3.9 mV. Hence, cell depolarization with 70 mM extracellular K+ or the inhibition of non-selective cation channels (NSCCs) and KCa channels by 10 microM Loe 908 and 10 mM tetrabutylammonium prevented histamine-evoked Ca2+ oscillations. Preventing Na+-Ca2+ exchange (NCX) by 10 microM 2', 4'-dichlorobenzamil, or removal of extracellular Na+, abolished histamine-induced Ca2+ oscillations. Lowering the extracellular Na+ concentration and thus promoting the reversed mode of NCX (3Na+ out and 1Ca2+ in) increased the amplitude and frequency of histamine-induced Ca2+ oscillations by 25 and 13 %, respectively. Hence, in the absence of extracellular Ca2+, 10 microM histamine induced an elevation of intracellular Na+ concentration in certain subplasmalemmal domains. The inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2,5-di-tert-butyl-1, 4-benzo-hydroquinone (15 microM) prevented histamine-induced Ca2+ oscillations. In addition, blockage of ryanodine-sensitive Ca2+ release (RsCR) by 25 microM ryanodine blunted Ca2+ oscillations. In endothelial cells that were treated for 16 h with 10 microM nocodazole to collapse the superficial endoplasmic reticulum (sER), no histamine-induced Ca2+ oscillations were found. We conclude that in low [Ca2+]o conditions histamine-induced Ca2+ oscillations depend on transmembrane Na+ loading through NSCCs that leads to Ca2+ entry via NCX. Cation influx is controlled by KCa channel activity that triggers membrane hyperpolarization and, thus, provides the driving force for cation influx. Hence, the Ca2+ entering needs to be sequestrated via SERCA into sER to become released by RsCR to evoke Ca2+ spiking. These data further support our previous work on localized Ca2+ signalling as a key phenomenon in endothelial Ca2+ homeostasis.
Collapse
Affiliation(s)
- J Paltauf-Doburzynska
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens University of Graz, Harrachgasse 21/III, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
13
|
Frieden M, Graier WF. Subplasmalemmal ryanodine-sensitive Ca2+ release contributes to Ca2+-dependent K+ channel activation in a human umbilical vein endothelial cell line. J Physiol 2000; 524 Pt 3:715-24. [PMID: 10790153 PMCID: PMC2269913 DOI: 10.1111/j.1469-7793.2000.00715.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The whole-cell configuration of the patch clamp technique was used to assess the involvement of ryanodine-sensitive Ca2+ release (RsCR) in histamine-activated Ca2+-dependent K+ (KCa) channels in the human umbilical vein endothelial cell line EA.hy926. Histamine (10 microM) induced a transient outward current that reached 18.9 +/- 5.5 pA pF-1 at +20 mV. This current was diminished by 1 mM tetraethylammonium or 50 nM iberiotoxin, by 90 % and 80 %, respectively, suggesting that this current results from the stimulation of large-conductance KCa (BKCa) channels. In about 50 % of the cells tested, stimulation of RsCR with 200 nM ryanodine initiated a small outward current that was also sensitive to iberiotoxin. Following the ryanodine-mediated RsCR, the potency of 10 microM histamine to activate KCa channels was reduced by about 60 %. In agreement, an inhibition of RsCR with 25 microM ryanodine diminished KCacurrent in response to histamine by about 70 %. The effect of 100 microM histamine on KCa channel activity was not reduced by previous RsCR with 200 nM ryanodine, or by an inhibition of RsCR by 25 microM ryanodine. Histamine (10 microM)-induced Ca2+ elevation was reduced by 30 % following ryanodine-mediated RsCR, whereas no inhibition occurred in the case of 100 microM histamine stimulation. In cells treated with 10 microM nocodazole for 16 h to collapse the superficial endoplasmic reticulum, 200 nM ryanodine failed to initiate any KCa current. Furthermore, the inhibitory effect of previous RsCR on 10 microM histamine-induced KCa current was not obtained in nocodazole-treated cells. Our data suggest that during moderate cell stimulation (10 microM histamine), subplasmalemmal RsCR greatly contributes to the activation of KCa channels in endothelial cells. Thus, the function of the subplasmalemmal Ca2+ control unit (SCCU) described previously must be extended as a regulator for KCa channels.
Collapse
Affiliation(s)
- M Frieden
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens University of Graz, Harrachgasse 21/III, A-8010 Graz, Austria
| | | |
Collapse
|
14
|
Praddaude F, Marchetti J, Alhenc-Gelas F, Ader J. Dissimilar mechanisms of Ca(2+) response to bradykinin in different types of juxtamedullary glomerular arterioles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F697-705. [PMID: 10564232 DOI: 10.1152/ajprenal.1999.277.5.f697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin (BK)-induced changes in intracellular calcium level ([Ca(2+)](i)) were studied on fura 2-loaded afferent (AA) and efferent glomerular arterioles (EA) microdissected from juxtamedullary renal cortex. A distinction was made between thin and muscular EA. In AA and both types of EA, BK increased [Ca(2+)](i) through activation of B(2) receptors located only on the endothelium. The responses were not affected by nifedipine (10(-6) M) and were smaller in a Ca(2+)-free medium, providing evidence that BK opens voltage-independent Ca(2+) channels and mobilizes intracellular Ca(2+). Thin EA differed from AA and muscular EA by a lower sensitivity to BK (EC(50) = 6.95 +/- 3.81 vs. 0.21 +/- 0.08 and 0.18 +/- 0.13 nM, respectively; P < 0.05), a higher maximal response (89 +/- 5 vs. 57 +/- 5 and 44 +/- 7 nM; P < 0.001), and a spontaneous return to basal Ca(2+) level, even in the presence of BK. Genistein (10(-4) M) and herbimycin A (25 x 10(-6) M), specific inhibitors of tyrosine kinases, inhibited the [Ca(2+)](i) responses exclusively in AA. Genistein reduced the peak and plateau phases of responses by 69 +/- 9 and 82 +/- 6%, respectively, in a medium with Ca(2+) and the peak by 48 +/- 9% in a Ca(2+)-free medium. Similar reductions were observed with herbimycin A. These results show that dissimilar signal transduction pathways are involved in BK effects on juxtamedullary arterioles and that a tyrosine kinase activity could participate in the regulation of BK effect on AA but not on EA.
Collapse
Affiliation(s)
- F Praddaude
- Physiology Laboratory, School of Medicine, 31062 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
15
|
Graier WF, Posch K, Fleischhacker E, Wascher TC, Kostner GM. Increased superoxide anion formation in endothelial cells during hyperglycemia: an adaptive response or initial step of vascular dysfunction? Diabetes Res Clin Pract 1999; 45:153-60. [PMID: 10588368 DOI: 10.1016/s0168-8227(99)00045-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In diabetes mellitus, the risk for cardiovascular complications and development of atherosclerosis is increased compared with healthy individuals. Recently evidence was provided that increased production of superoxide anions occurs in endothelial cells during hyperglycemia. In order to evaluate the potential impact of the enhanced formation of this oxygen radical for vascular cell dysfunction and its role in tissue adaptation, it is essential to assess the effect of superoxide anions on endothelial cell function. Here, we present new data and review our previous work on the effects of superoxide anions on endothelial vascular function, such as intracellular Ca2+ signal cascade, formation and bioactivity of nitric oxide. Based on the presented data we discuss superoxide anion production as a two faced phenomenon. In lower concentrations, superoxide anions are mediators of an endothelium adaptation to ensure endothelial vasomotion control. However, in higher concentrations superoxide anions disrupt endothelial-smooth muscle crosstalk resulting in vessel wall dysfunction and vascular wall dysfunction.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Aorta
- Arteries
- Calcium/metabolism
- Cells, Cultured
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/physiopathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Female
- Glucose/pharmacology
- Hyperglycemia/metabolism
- Models, Cardiovascular
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/metabolism
- Signal Transduction
- Superoxides/metabolism
- Swine
- Uterus/blood supply
- Xanthine/pharmacology
- Xanthine Oxidase/pharmacology
Collapse
Affiliation(s)
- W F Graier
- Department of Medical Biochemistry, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
16
|
Mombouli JV, Schaeffer G, Holzmann S, Kostner GM, Graier WF. Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells. Br J Pharmacol 1999; 126:1593-600. [PMID: 10323591 PMCID: PMC1565946 DOI: 10.1038/sj.bjp.0702483] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Experiments were designed to determine whether anandamide affects cytosolic Ca2+ concentrations in endothelial cells and, if so, whether CB1 cannabinoid receptors are involved. To this effect, human umbilical vein-derived EA.hy926 endothelial cells were loaded with fura-2 to monitor changes in cytosolic Ca2+ using conventional fluorescence spectrometry methods. 2. Anandamide induced an increase in Ca2+ in endothelial cells which, in contrast to histamine, developed slowly and was transient. Anandamide caused a concentration-dependent release of Ca2+ from intracellular stores without triggering capacitative Ca2+ entry, contrary to histamine or the endoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin. 3. Anandamide pretreatment slightly reduced the mobilization of Ca2+ from intracellular stores that was evoked by histamine. The mobilization of Ca2+ from intracellular stores evoked by anandamide was impaired by 10 mM caffeine. 4. Anandamide and histamine each significantly increased NO synthase activity in EA.hy926 cells, as determined by the enhanced conversion of L-[3H]-arginine to L-[3H]-citruline. 5. The CB1 cannabinoid receptor antagonist SR141716A (1 microM) only produced a marginal reduction of the mobilization of Ca2+ produced by 5 microM anandamide. However, at 5 microM SR141716A elicited the release of Ca2+ from intracellular stores. This concentration strongly impaired the mobilization of cytosolic Ca2+ evoked by either anandamide, histamine or thapsigargin. 6. Pretreatment of the cells with either 200 microM phenylmethylsulphonyl fluoride (to inhibit the conversion of anandamide into arachidonic acid) or 400 ng ml(-1) pertussis toxin (to uncouple CB1 cannabinoid receptors from Gi/o proteins) had no significant effect on the mobilization of cytosolic Ca2+ evoked by either anandamide, or histamine. 7. Taken together the results demonstrate that anandamide mobilizes Ca2+ from a caffeine-sensitive intracellular Ca2+ store that functionally overlaps in part with the internal stores mobilized by histamine. However, a classical CB1 cannabinoid receptor-mediated and pertussis toxin-sensitive mechanism does not mediate this novel effect of anandamide in endothelial cells. 8. The mobilization of cytosolic Ca2+ in endothelial cells may account for the endothelium-dependent and NO-mediated vasodilator actions of anandamide. Due to its non-specific inhibition of Ca2+ signalling in endothelial cells, SR141716A may not be used to assess the physiological involvement of endogenous cannabinoids to endothelium-dependent control of vascular smooth muscle tone.
Collapse
Affiliation(s)
- Jean-Vivien Mombouli
- Department of Medical Biochemistry, Karl Franzens University of Graz, Harrachgasse 21/III, Graz A8010 Austria
| | - Gabriela Schaeffer
- Department of Medical Biochemistry, Karl Franzens University of Graz, Harrachgasse 21/III, Graz A8010 Austria
| | - Sigrid Holzmann
- Department of Pharmacology and Toxicology, Karl Franzens University of Graz, Harrachgasse 21/III, Graz A8010 Austria
| | - Gert M Kostner
- Department of Medical Biochemistry, Karl Franzens University of Graz, Harrachgasse 21/III, Graz A8010 Austria
| | - Wolfgang F Graier
- Department of Medical Biochemistry, Karl Franzens University of Graz, Harrachgasse 21/III, Graz A8010 Austria
- Author for correspondence:
| |
Collapse
|
17
|
Posch K, Schmidt K, Graier WF. Selective stimulation of L-arginine uptake contributes to shear stress-induced formation of nitric oxide. Life Sci 1999; 64:663-70. [PMID: 10069529 DOI: 10.1016/s0024-3205(98)00608-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the kinetics of L-arginine transport mechanisms and the role of extracellular L-arginine in nitric oxide formation during shear stress activation of endothelial cells. Porcine aortic endothelial cells were grown to confluence and were exposed to various amounts of shear stress for 40 min. Formation of nitric oxide was monitored by measuring elevation of endothelial cGMP. Activity of amino acid transport systems was determined by measuring the uptake of L-[3H]leucine (L system) and L-[3H]arginine (y+) under resting and shear stress condition. Shear stress-mediated nitric oxide formation critically depended on the presence of extracellular L-arginine, which increased shear stress-induced cGMP increases in a concentration dependent manner (EC50=123 microM). In addition, shear stress increased L-arginine uptake, while the transport capacity for neutral amino acids (L system) remained unchanged under shear stress conditions. Analysis of the kinetics of the uptake of L-arginine under resting and shear stress conditions indicate that shear stress increased velocity of the high affinity, low capacity transport (y+) without affecting affinity of this system. These data suggest that shear stress selectively activates uptake of L-arginine in endothelial cells and that the uptake of L-arginine might be important for shear stress-mediated nitric oxide formation.
Collapse
Affiliation(s)
- K Posch
- Department of Medical Biochemistry, Karl-Franzens University of Graz, Austria
| | | | | |
Collapse
|
18
|
Andriambeloson E, Stoclet JC, Andriantsitohaina R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J Cardiovasc Pharmacol 1999; 33:248-54. [PMID: 10028933 DOI: 10.1097/00005344-199902000-00011] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which red wine polyphenolic compounds (RWPCs) induced endothelium-dependent relaxation were investigated in rat thoracic aorta rings with endothelium. RWPCs produced relaxation that was prevented by the nitric oxide (NO) synthase inhibitor, N(omega)-nitro-L-arginine-methyl-ester. This relaxation was abolished in the absence of extracellular calcium in the medium or in the presence of the Ca2+ entry blocker, La3+, but it was not affected by the nonselective K+ channels blocker, tetrabutylammonium. N-Ethyl-maleimide (NEM), a sulfhydryl alkylating agent, abolished vasorelaxation produced by RWPCs and acetylcholine but not that produced either by the sarcoendoplasmic reticulum Ca2+-adenosine triphosphatase (ATPase) pump inhibitor, cyclopyazonic acid (CPA) or the calcium ionophore, ionomycin. Neither pertussis toxin (PTX) nor cholera toxin (CTX) inhibited the vasorelaxant effect of RWPC. The effect of RWPC was not affected by the phospholipase C (PLC) blocker, L-alpha-glycerophospho-D-myo-inositol 4-monophosphate (Gro-pip), and the phospholipase A2 pathway blockers, quinacrine and ONO-RS-082. Finally, the protein kinase C (PKC) inhibitor, GF 109203X, and tyrosine kinase inhibitors, tyrphostin A-23 and genistein, did not impair the response to RWPCs. These results suggest that RWPCs produce endothelium-NO-derived vasorelaxation through an extracellular Ca2+-dependent mechanism via an NEM-sensitive pathway. They also show that PTX- or CTX-sensitive G proteins, activation of PLC or PLA2 pathways, PKC, or tyrosine kinase may not be involved.
Collapse
Affiliation(s)
- E Andriambeloson
- Laboratoire de Pharmacologie et Physiopathologie Cellulaires, Université Louis Pasteur de Strasbourg, CNRS ERS 653 Faculté de Pharmacie, Illkirch, France
| | | | | |
Collapse
|
19
|
Paltauf-Doburzynska J, Posch K, Paltauf G, Graier WF. Stealth ryanodine-sensitive Ca2+ release contributes to activity of capacitative Ca2+ entry and nitric oxide synthase in bovine endothelial cells. J Physiol 1998; 513 ( Pt 2):369-79. [PMID: 9806989 PMCID: PMC2231284 DOI: 10.1111/j.1469-7793.1998.369bb.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The involvement of ryanodine-sensitive Ca2+ release (RsCR) in bradykinin (Bk)-induced Ca2+ release, capacitative Ca2+ entry (CCE) and nitric oxide synthase (NOS) activation was assessed in freshly isolated bovine coronary artery endothelial cells. 2. Using deconvolution microscopy fura-2 was found throughout the whole cytosol, while the cell membrane impermeable dye FFP-18 was exclusively in the cell membrane. Thus, perinuclear ([Ca2+]pn) and subplasmalemmal Ca2+ concentration ([Ca2+]sp) were monitored using fura-2 and FFP-18. 3. Inhibition of Na+-Ca2+ exchange by lowering extracellular Na+ concentration augmented the Bk-induced [Ca2+]pn signal in Ca2+-free solution. This effect was abolished when RsCR was prevented with 25 micromol l-1 ryanodine, while inhibition of RsCR had no effect on Bk-induced increase in [Ca2+]pn without inhibition of Na+-Ca2+ exchange. 4. Initiating RsCR by 200 nmol l-1 ryanodine increased [Ca2+]sp, while [Ca2+]pn remained constant. However, when Na+-Ca2+ exchange was prevented, ryanodine was also able to elevate [Ca2+]pn. 5. Blockage of RsCR diminished Ca2+ extrusion in response to stimulation with Bk in normal Na+-containing solution. 6. Inhibition of RsCR blunted Bk-activated CCE, while inhibition of Na+-Ca2+ exchange during stimulation enhanced CCE. 7. Although direct activation of RsCR failed to activate NOS, inhibition of RsCR diminished the effect of ATP and Bk on NOS, while the effect of thapsigargin remained unchanged. 8. These data suggest that during stimulation subplasmalemmal RsCR occurs, which contributes to the activities of CCE and NOS. Thus, the function of the subplasmalemmal Ca2+ control unit must be extended as a regulator for CCE and NOS.
Collapse
Affiliation(s)
- J Paltauf-Doburzynska
- Department of Medical Biochemistry, University of Graz, Harrachgasse 21/III, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
20
|
Hoebel BG, Steyrer E, Graier WF. Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor? Clin Exp Pharmacol Physiol 1998; 25:826-30. [PMID: 9784924 DOI: 10.1111/j.1440-1681.1998.tb02162.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. In addition to their contribution to endothelium-derived hyperpolarization, our understanding of the physiological function of epoxyeicosatrienoic acids (EET) within the vascular wall and the actual enzymes involved in the formation of the EET in endothelial cells is very limited. In the present study, the expression of potential cytochrome P450 (CYP) mono/epoxygenases was assessed in endothelial cells isolated from porcine and bovine aortas as well as in the human umbilical vein-derived cell lines EA.hy926 and ECV304. 2. Expression of CYP2B1, CYP2E1 and CYP3A could be found. The latter were inducible by dexamethasone/clofibrate for 72 h, a procedure that also enhanced CYP epoxygenase activity in endothelial cells. 3. Enzyme induction yielded increases in capacitative Ca2+ entry and membrane hyperpolarization in response to autacoids, such as bradykinin and thapsigargin. Thiopentone sodium, an inhibitor of endothelial CYP mono/epoxygenase(s), diminished autacoid-induced capacitative Ca2+ entry and membrane hyperpolarization, while the effect of EET remained unchanged. 4. Epoxyeicosatrienoic acids activated endothelial tyrosine kinase activity in a concentration-dependent manner. Arachidonic acid, at 20-fold higher concentrations, also increased tyrosine kinase activity. Because only the effect of arachidonic acid was inhibited by thiopentone sodium, an inhibitor of CYP mono/epoxygenases, these data suggest that arachidonic acid needs to be converted to the EET in order to stimulate tyrosine kinase. 5. All these data provide clear evidence that the CYP epoxygenase-derived arachidonic acid metabolites (EET) not only serve as potential endothelium-derived hyperpolarizing factors but also constitute highly active intracellular messengers with a physiological role including the control of Ca2+ signalling, membrane potential and tyrosine kinase activity.
Collapse
Affiliation(s)
- B G Hoebel
- Department of Medical Biochemistry, University of Graz, Austria
| | | | | |
Collapse
|
21
|
Ono K, Nakao M, Iijima T. Chloride-sensitive nature of the histamine-induced Ca2+ entry in cultured human aortic endothelial cells. J Physiol 1998; 511 ( Pt 3):837-49. [PMID: 9714864 PMCID: PMC2231165 DOI: 10.1111/j.1469-7793.1998.837bg.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Whole-cell currents and intracellular Ca2+ concentration ([Ca2+]i) were recorded in cultured human aortic endothelial cells (HAECs) to study the mechanisms underlying Cl--sensitive Ca2+ entry. 2. In the absence of histamine the membrane potential ranged between -90 and +5 mV and showed bimodal distribution with peaks at -17.8 and -67.5 mV. 3. Histamine (1-100 microM) activated an outward current, followed by a sustained inward current at -50 mV. The reversal potential (Vrev) was more negative than -60 mV for the initial outward current, and approximately -30 mV for the sustained inward current with normal Tyrode solution and internal solution containing 30 mM Cl-. 4. Vrev of the sustained inward current was hardly affected by varying the external concentrations of K+, Na+ and Ca2+, but was greatly changed by varying the external Cl- concentration ([Cl-]o). The relationship between Vrev and log[Cl-]o showed a slope of -44.8 mV per tenfold increase of [Cl-]o. 5. The Cl- channel blockers 9-anthracene carboxylic acid (1 mM), N-phenylanthranilic acid (0.1 mM) and niflumic acid (0.1 mM) all depressed the histamine-induced inward current. The non-selective cation channel blocker Gd3+ (10 microM) was without effect on the current. 6. In the absence of histamine, [Ca2+]i was not affected by varying the membrane potential. During the continuous presence of histamine, however, hyperpolarization increased and depolarization decreased [Ca2+]i, indicating that Ca2+ entry through the plasma membrane was activated by histamine. 7. Vrev of the histamine-induced Cl- current, measured by the gramicidin-perforated patch clamp method, was -28.4 +/- 6.6 mV (n = 8), which gave an intracellular Cl- concentration of approximately 34 mM. Under the current clamp condition, the membrane potential varied from cell to cell in the control, but application of histamine induced either depolarization or hyperpolarization, depending on the membrane potential before histamine application, and the membrane potential became stable near the equilibrium potential for Cl-. 8. We conclude that the histamine-induced inward current is carried mainly by Cl-. Although Ca2+ entry was also activated, we consider that its amplitude was too small to be resolved by the patch clamp method. The Cl- current may play a functional role in the sustained [Ca2+]i elevation by providing a constant driving force for Ca2+ entry in the presence of histamine.
Collapse
Affiliation(s)
- K Ono
- Department of Pharmacology, Akita University School of Medicine, 1-1-1 Hondoh, Akita 010-8543, Japan
| | | | | |
Collapse
|
22
|
Herrera GM, Resta TC, Candelaria JJ, Walker BR. Maintained vasodilatory response to cromakalim after inhibition of nitric oxide synthesis. J Cardiovasc Pharmacol 1998; 31:921-9. [PMID: 9641478 DOI: 10.1097/00005344-199806000-00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of vascular smooth-muscle adenosine triphosphate-sensitive potassium channels (KATP channels) causes membrane hyperpolarization, reduced entry of Ca2+ through L-type voltage-gated Ca2+ channels, and subsequent smooth-muscle relaxation. Conversely, opening of endothelial KATP channels elicits hyperpolarization but may induce Ca2+ influx and stimulation of endothelium-derived nitric oxide (EDNO) because these cells appear not to possess L-type Ca2+ channels. We therefore hypothesized that EDNO contributes to KATP channel-mediated vasodilation. To test this hypothesis, we examined vasodilatory responses to the KATP channel opener cromakalim in conscious rats, perfused rat tail artery segments, and isolated perfused rat lungs in the presence or absence of the EDNO synthesis inhibitor Nomega-nitro-L-arginine (L-NNA). Additionally, we compared the effect of cromakalim with the EDNO-dependent dilator bradykinin on NO production and intracellular Ca2+ in cultured rat pulmonary artery endothelial cells. Vasodilatory profiles to cromakalim were unaffected by L-NNA in conscious rats, tail arteries, and isolated lungs. Consistent with these results, cromakalim had no apparent effect on either NO synthesis or Ca2+ levels in cultured endothelial cells. These data suggest a lack of a role for EDNO in contributing to KATP-channel-mediated vasodilation in the rat.
Collapse
Affiliation(s)
- G M Herrera
- Department of Cell Biology and Physiology, University of New Mexico, Health Sciences Center, Albuquerque 87131-5218, USA
| | | | | | | |
Collapse
|
23
|
Wood PG, Gillespie JI. Evidence for mitochondrial Ca(2+)-induced Ca2+ release in permeabilised endothelial cells. Biochem Biophys Res Commun 1998; 246:543-8. [PMID: 9610399 DOI: 10.1006/bbrc.1998.8661] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Generally most intracellular Ca2+ is stored in the endoplasmic reticulum (ER) and mitochondria. Recently a mitochondrial Ca(2+)-induced Ca2+ release (mCICR) mechanism, unconnected with ryanodine receptors (RyR's), has been shown in tumour cells. The existence of a mitochondrial Ca2+ release mechanism in BAE cells was investigated using saponin-permeabilised BAE cells. When buffered intracellular solution were 'stepped' from 10 nM to 10 microM free Ca2+, the mitochondrial inhibitors CN (2 mM), FCCP (1 microM), and RR (20 microM) significantly reduced total CICR by approximately 25%. The ER Ca(2+)-ATPase inhibitor thapsigargin (100 nM) had no effect. Furthermore, cyclosporin A (200 nM), an inhibitor of the mitochondrial permeability transition pore (PTP), abolished total CICR. Therefore, the novel ryanodine-caffeine insensitive CICR mechanism previously reported in BAE cells involves mitochondrial Ca2 release. It is proposed that in BAE cells, mCICR occurs via the mitochondrial PTP and may be physiologically important in endothelial cell Ca2+ signalling.
Collapse
Affiliation(s)
- P G Wood
- Department of Physiological Sciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
24
|
Tran NN, Spitzbarth E, Robert A, Giummelly P, Atkinson J, Capdeville-Atkinson C. Nitric oxide lowers the calcium sensitivity of tension in the rat tail artery. J Physiol 1998; 507 ( Pt 1):163-74. [PMID: 9490833 PMCID: PMC2230774 DOI: 10.1111/j.1469-7793.1998.163bu.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Controversy exists as to whether a fall in the intracellular Ca2+ concentration ([Ca2+]i) is a requisite element of the vasodilatory response to nitric oxide (NO). 2. We studied the effect of NO on the coupling between [Ca2+]i and vasoconstriction in arterial segments loaded with the [Ca2+]i-sensitive, intracellular dye fura-2. As data interpretation is equivocal when fura-2 is loaded into both endothelial and smooth muscle cells, we compared results from in vitro experiments on segments of the rat tail artery in which fura-2 and noradrenaline were applied on the luminal or adventitial side, and endothelium was removed 'physically' (rubbing or air) or 'functionally' (Nomega-nitro-L-arginine methyl ester). The use of air perfusion to remove endothelium is of considerable benefit since it allows paired observations in a single tissue. 3. Fura-2 loaded into endothelial cells but endothelial 'contamination' of the smooth muscle cell [Ca2+]i signal was minimal. 4. Endogenous NO decreased vasoconstrictor responses to noradrenaline but had no effect on [Ca2+]i. 5. Nitroglycerine decreased vasoconstrictor responses in a concentration-dependent fashion but had no effect on [Ca2+]i. 6. In conclusion, NO causes vasodilatation via a mechanism which is downstream of [Ca2+]i mobilization.
Collapse
Affiliation(s)
- N N Tran
- Laboratoire de Pharmacologie Cardio-vasculaire, Faculte de Pharmacie, Universite Henri Poincare-Nancy I, 5 rue Albert Lebrun, 54001 Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Wood PG, Gillespie JI. Inositol 1,4,5-trisphosphate and basal Ca2+ release is affected by the cytoplasmic concentration of Cl- in endothelial cells. Biochem Biophys Res Commun 1997; 238:292-6. [PMID: 9299497 DOI: 10.1006/bbrc.1997.7280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of varying Cl- concentration in the intracellular bathing medium, on IP3-induced 45Ca2+ release from internal stores, were examined in saponin-permeabilised bovine aortic endothelial (BAE) cells. Results from this study show that the release of Ca2+ from the internal stores is affected by the cytoplasmic concentration of Cl- ions. Complete replacement of Cl- with gluconate augmented IP3 (3 microM)-induced 45Ca2+ release by 33 +/- 8%. Replacement of both Cl- and K+ with gluconate and NMG, respectively, had no significant effect on 45Ca2+ release. However, resting levels of internal 45Ca2+ were found to be affected by Cl- removal. These data suggest that in BAE cells, IP3 and also basal 45Ca2+ release may be regulated by the physiological intracellular Cl- concentration.
Collapse
Affiliation(s)
- P G Wood
- Department of Physiological Sciences, Medical School, University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | | |
Collapse
|
26
|
Wascher TC, Posch K, Wallner S, Hermetter A, Kostner GM, Graier WF. Vascular effects of L-arginine: anything beyond a substrate for the NO-synthase? Biochem Biophys Res Commun 1997; 234:35-8. [PMID: 9168955 DOI: 10.1006/bbrc.1997.9994] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L-arginine supplementation is hypothesized to reduce endothelial dysfunction and atherogenesis via increased biosynthesis of nitric oxide. Here we describe superoxide scavenging properties of arginine as an additional aspect which needs to be considered. Furthermore, arginine reduced copper-induced lipid peroxidation, indicating that superoxide anions essentially contribute to this process. In intact endothelial cells, L-arginine but not D-arginine diminished superoxide release and reduced cell-mediated breakdown of nitric oxide. Our data indicate that the reported vascular effects of L-arginine supplementation might involve an increased bioavailability of nitric oxide due to its superoxide scavenging properties beside a potential increased NO biosynthesis.
Collapse
Affiliation(s)
- T C Wascher
- Department of Internal Medicine, University of Graz, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Graier WF, Simecek S, Hoebel BG, Wascher TC, Dittrich P, Kostner GM. Antioxidants prevent high-D-glucose-enhanced endothelial Ca2+/cGMP response by scavenging superoxide anions. Eur J Pharmacol 1997; 322:113-22. [PMID: 9088879 DOI: 10.1016/s0014-2999(96)00989-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Very recently we proposed that hyperactivity of endothelial Ca2+/cGMP signaling under hyperglycemic conditions is due to superoxide anion (O2-) release. The present study was designed to investigate changes in endothelial glutathione (GSH) levels in response to high D-glucose and possible prevention of the high-D-glucose-initiated changes in Ca2+/cGMP signal by antioxidants. Under hyperglycemic conditions, GSH content increased by 29% within 4 h. Co-incubation with 10 mM GSH during high-D-glucose treatment normalized the Ca2+/cGMP response associated with an increase in GSH content by 222%. Vitamin C (250 microM) markedly diminished the high-D-glucose-mediated hyperreactivity of endothelial Ca2+ entry (by 40%) and Ca2+ release (by 52%). Similar to GSH, co-incubation with vitamin E (alpha-tocopherol; 50 micrograms/ml) and probucol (50 microM) completely prevented the high-D-glucose-initiated hyperreactivity of the endothelial Ca2+/cGMP response. Vitamin E, probucol, GSH and vitamin C diminished the high-D-glucose-mediated O2- release by 78, 65, 89 and 46%, respectively. These data suggest that antioxidants prevent high-D-glucose-initiated changes in endothelial Ca2+/cGMP response by scavenging the overshoot of O2-.
Collapse
Affiliation(s)
- W F Graier
- Department of Medical Biochemistry, University of Graz, Austria.
| | | | | | | | | | | |
Collapse
|
28
|
Paltauf-Doburzynska J, Graier WF. Temperature dependence of agonist-stimulated Ca2+ signaling in cultured endothelial cells. Cell Calcium 1997; 21:43-51. [PMID: 9056076 DOI: 10.1016/s0143-4160(97)90095-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In cultured endothelial cells, the temperature dependence of bradykinin-initiated Ca2+ signaling was studied using Fura-2 technique. Initially, the temperature dependence of the dissociation constant of Fura-2 for Ca2+ was investigated. Temperature-initiated changes in the apparent dissociation constant (K'D) using the ratio (F340/F380) were due to a hypsochromic shift in excitation wavelengths and changes in the effective dissociation constant of Fura-2 for Ca2+ (K"D). Equations were provided to correct the dissociation constant for Fura-2, either for using the common ratio (F340/F380) or the shift corrected ratio (F340-delta lambda/F380-delta lambda). In a simple experimental protocol, the temperature dependence of the transient increase in free intracellular Ca2+ to bradykinin (i.e. Ca2+ release, sequestration and extrusion) and Ca2+/Mn2+ entry through a Ca2+ store-operated Ca2+ entry pathway (SOCP) were determined. While the temperature dependence of intracellular Ca2+ release, sequestration and extrusion (i.e. enzymatically controlled phenomena) were found to follow the same exponential function [t = A x e(-B x T); t, reaction time; A, B, constants; T, experimental temperature in K; K = degree C + 273], Ca2+/Mn2+ entry upon ion application to pre-stimulated cells strictly followed Fick's law of diffusion [t = A x (1/T) x e(B/T); t, reaction time; A, B, constants; T, experimental temperature in K]. In contrast to the temperature dependence of bradykinin-stimulated Ca2+/Mn2+ entry, the temperature dependence of Mn2+ entry on addition of agonist did not correlate with Fick's law of diffusion, but followed the same exponential function obtained for Ca2+ release, sequestration and extrusion. In conclusion, these data suggest that activation of SOCP by autacoid is due to enzymatic mechanism(s), while Ca2+ entry through SOCP, once activated, is due to a diffusion-like phenomenon.
Collapse
|
29
|
Moini H, Bilsel S, Bekdemir T, Emerk K. 17 beta-Estradiol increases intracellular free calcium concentrations of human vascular endothelial cells and modulates its responses to acetylcholine. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1997; 5:11-9. [PMID: 9142318 DOI: 10.3109/10623329709044155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we have investigated the effect of 17 beta-estradiol (E2) on intracellular free calcium concentrations ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC) using fura-2 fluorescence. E2 at concentrations of 1nM -1 microM was added subsequently to HUVEC cultures which were either deprived of estrogens or preincubated with E2 (100 nM) for 24 hours. In both groups of cultures, E2 stimulated significant increases in [Ca2+]i in a dose-dependent manner. The effects were more prominent in E2-deprived cells. Preincubation of cells with tamoxifen or the presence of it in the buffer during the experiments did not inhibit the response of the cells to E2. Experiments performed in Ca2+ free/EGTA buffer yielded transient increases in [Ca2+]i suggesting release of Ca2+ from intracellular stores was responsible for the initial peak, while sustained elevations were supported by Ca2+ influx from the extracellular space. Addition of La3+ abolished the sustained [Ca2+]i elevations. Carbachol (CCh) (1nM, 100 nM) did not induce changes in [Ca2+]i of estrogen-deprived cells but produced significant increases in [Ca2+]i of the same cells after incubation with E2 for 30 minutes. The cultures which were preincubated with E2 for 24 hours responded to carbachol directly. The results of our study indicate that E2 may modulate the functions of endothelial cells after only a brief exposure and also may be necessary for the response to acetylcholine especially at low concentrations.
Collapse
Affiliation(s)
- H Moini
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey.
| | | | | | | |
Collapse
|
30
|
Mateo J, Miras-Portugal MT, Castro E. Co-existence of P2Y-and PPADS-insensitive P2U-purinoceptors in endothelial cells from adrenal medulla. Br J Pharmacol 1996; 119:1223-32. [PMID: 8937727 PMCID: PMC1915897 DOI: 10.1111/j.1476-5381.1996.tb16026.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. We have studied the effects of purinoceptor stimulation on Ca2+ signals in bovine adrenomedullary endothelial cells. [Ca2+]i was determined with the fluorescent probe fura-2 both in population samples and in single, isolated, endothelial cells in primary culture and after subculturing. 2. In endothelial cells, maintained in culture for more than one passage, several purinoceptor agonists elicited clear [Ca2+]i transient peaks that remained in the absence of extracellular Ca2+. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were equipotently active, with EC50 values of 8.5 +/- 0.9 microM and 6.9 +/- 1.5 microM, respectively, whereas 2-methylthioadenosine 5'-triphosphate (2MeSATP), adenosine 5'-(alpha, beta-methylene)triphosphate (alpha, beta-MeATP) and adenosine(5')tetraphospho(5')adenosine (Ap4A) were basically inactive. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) was a weak agonist. The apparent potency order was UTP = ATP > ADP beta S >> 2MeSATP > alpha, beta-MeATP. 3. Cross-desensitization experiments revealed that UTP or ATP, added sequentially at concentrations of maximal effect, could completely abolish the [Ca2+]i response to the second agonist. ADP beta S exerted only a partial desensitization of the response to maximal ATP, in accordance with its lower potency in raising [Ca2+]i. 4. The effect on [Ca2+]i of 100 microM ATP in subcultured cells was reduced by only 25% with 100 microM suramin pretreatment and was negligibly affected by exposure to 10 microM pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS). The concentration-effect curve for ATP was not significantly affected by PPADS, but was displaced to the right by a factor of 6.5 by 100 microM suramin. 5. In primary cultures, clear [Ca2+]i responses were elicited by 2MeSATP. Suramin totally and selectively blocked 2MeSATP responses, whereas UTP-evoked [Ca2+]i transients were mainly unaffected by suramin or PPADS. Over 80% of cells tested showed responses to both 2MeSATP and UTP. The [Ca2+]i response to UTP was not desensitized in the presence of 2MeSATP. 6. ATP and UTP stimulated the release of preloaded [3H]-arachidonic acid ([3H]-AA), both in the presence and in the absence of extracellular Ca2+, by approximately 135% with respect to basal levels. Suramin and PPADS enhanced, rather than inhibited, the [3H]-AA releasing effect of ATP by 2.5 times. Suramin also potentiated the effect of the calcium ionophore A23187. 7. These results indicate that endothelial cells from adrenomedullary capillaries co-express both P2Y- and P2U-purinoceptors. P2Y-purinoceptors are lost in culture with the first passage of the cells. The P2U-purinoceptor subtype present in these cells is insensitive to PPADS and thus similar to that found in aortic endothelial cells.
Collapse
Affiliation(s)
- J Mateo
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, Spain
| | | | | |
Collapse
|
31
|
Graier WF, Holzmann S, Hoebel BG, Kukovetz WR, Kostner GM. Mechanisms of L-NG nitroarginine/indomethacin-resistant relaxation in bovine and porcine coronary arteries. Br J Pharmacol 1996; 119:1177-86. [PMID: 8937721 PMCID: PMC1915901 DOI: 10.1111/j.1476-5381.1996.tb16020.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Coronary arteries from bovines (BCA) and pigs (PCA) were used for measuring endothelium-dependent relaxation in the presence of L-NG nitroarginine and indomethacin. As some compounds tested have been found to have an inhibitory effect on autacoid-activated endothelial Ca2+ signalling, endothelium-dependent relaxation was initiated with the Ca2+ ionophore A23187. 2. The common compounds for modulating arachidonic acid release/pathway, mepacrine and econazole only inhibited L-NG nitroarginine-resistant relaxation in BCA not in PCA. In contrast, proadifen (SKF 525A) diminished relaxation in BCA and PCA. Mepacrine and proadifen inhibited Hoe-234-initiated relaxation in BCA and PCA, while econazole only inhibited Hoe 234-induced relaxation in PCA. Due to the multiple effects of these compounds, caution is necessary in the interpretation of results obtained with these compounds. 3. The inhibitor of Ca(2+)-activated K+ channels, apamin, strongly attenuated A23187-induced L-NG nitroarginine-resistant relaxation in BCA while apamin did not affect L-NG nitroarginine-resistant relaxation in PCA. 4. Pertussis toxin blunted L-NG nitroarginine-resistant relaxation in BCA, while relaxation of PCA was not affected by pertussis toxin. 5. Thiopentone sodium inhibited endothelial cytochrome P450 epoxygenase (EPO) in PCA but not in BCA, while L-NG nitroarginine-resistant relaxation of BCA and PCA were unchanged. Protoporphyrine IX inhibited EPO in BCA and PCA and abolished L-NG nitroarginine-resistant relaxation of BCA not PCA. 6. An EPO-derived compound, 11,12-epoxy-eicosatrienoic acid (11,12-EET) yielded significant relaxation in BCA and PCA in three out of six experiments. 7. These findings suggest that L-NG nitroarginine-resistant relaxation in BCA and PCA constitutes two distinct pathways. In BCA, activation of Ca(2+)-activated K+ channels via a pertussis-toxin-sensitive G protein and EPO-derived compounds might be involved. In PCA, no selective inhibition of L-NG nitroarginine-resistant relaxation was found.
Collapse
Affiliation(s)
- W F Graier
- Department of Medical Biochemistry, University of Graz, Austria
| | | | | | | | | |
Collapse
|
32
|
Wascher TC, Bachernegg M, Kickenweiz A, Stark G, Stark U, Toplak H, Graier WF. Involvement of the L-arginine-nitric oxide pathway in hyperglycaemia-induced coronary artery dysfunction of isolated guinea pig hearts. Eur J Clin Invest 1996; 26:707-12. [PMID: 8872068 DOI: 10.1111/j.1365-2362.1996.tb02157.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of hyperglycaemia and L-arginine on flow-induced reduction of coronary artery resistance were investigated in isolated guinea pig hearts. In the presence of indomethacin, hyperglycaemia caused an increase in flow-induced vasodilatation (P < 0.05). Hyperosmotic controls failed to mimic this effect. Addition of L-arginine strongly enhanced this effect. Addition of D-arginine failed to mimic the effects of L-arginine. The effect of L-arginine was abolished by co-administration of NG-nitro-L-arginine. In the absence of indomethacin and L-arginine, the effect of hyperglycaemia was blunted, suggesting the formation of vasoconstrictive prostanoids. Addition of L-arginine again resulted in a significant increase in flow-induced vasodilatation. In conclusion our results suggest that increased flow-induced vasodilatation under hyperglycaemic conditions depends on an adequate supply of L-arginine to maintain sufficient formation of nitric oxide.
Collapse
Affiliation(s)
- T C Wascher
- Diabetic Angiopathy Research Group, University of Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Otun H, Aidulis DM, Yang JM, Gillespie JI. Interactions between inositol trisphosphate and Ca2+ dependent Ca2+ release mechanisms on the endoplasmic reticulum of permeabilised bovine aortic endothelial cells. Cell Calcium 1996; 19:315-25. [PMID: 8983852 DOI: 10.1016/s0143-4160(96)90072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this paper we describe data from cultured bovine aortic endothelial (BAE) cells demonstrating a Ca2+ induced Ca2+ release (CICR) process which appears to have pharmacological properties different from CICR mechanisms in other cell types. CICR was measured in saponin permeabilised cells in which the internal stores had been preloaded with 45Ca2+. Step increases in the free Ca2+ concentration of the bathing solution, from 10 nM up to 10 microM were found to increase 45Ca2+ loss. This process was completely inhibited by ruthenium red. Caffeine induced a small release of 45Ca2+ and the response to a subsequent stimulation with a Ca2+ step was reduced. In intact cells, ryanodine activated small oscillations in intracellular Ca2+ in the presence, but not the absence, of external Ca2+. However, in permeabilised cells, ryanodine had no effect on either basal efflux or the increased efflux of 45Ca2+ seen following a step increase in free Ca2+. These data suggest the operation of a ruthenium red sensitive but ryanodine insensitive CICR mechanism on the endoplasmic reticulum (ER) which may also be modulated by caffeine. An IP3 dependent 45Ca2+ release was also observed. In the presence of ruthenium red, the IP3 induced 45Ca2+ release was reduced suggesting that CICR may operate to amplify the magnitude of the IP3 response. The Ca2+ dependence of the IP3 induced release was also measured. Co-operativity between IP3 and Ca2+ could not be detected between 100-300 nM Ca2+. The results suggest that the regulation of IP3 induced Ca2+ release may be different in BAE cells, and point to the operation of a 'novel' CICR process and to complex interactions between Ca2+ release systems in BAE cells.
Collapse
Affiliation(s)
- H Otun
- Department of Obstetrics and Gynaecology, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|