1
|
Chen X, Yu X, Lian G, Tang H, Yan Y, Gao G, Huang B, Luo L, Xie L. Canagliflozin inhibits PASMCs proliferation via regulating SGLT1/AMPK signaling and attenuates artery remodeling in MCT-induced pulmonary arterial hypertension. Biomed Pharmacother 2024; 174:116505. [PMID: 38574614 DOI: 10.1016/j.biopha.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xing Yu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huibin Tang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan Yan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bangbang Huang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Chen A, Gao G, Lian G, Gong J, Luo L, Liu J, Chen W, Xu C, Wang H, Xie L. Zinc promotes cell proliferation via regulating metal-regulatory transcription factor 1 expression and transcriptional activity in pulmonary arterial hypertension. Cell Cycle 2023; 22:1284-1301. [PMID: 37128643 PMCID: PMC10193901 DOI: 10.1080/15384101.2023.2205209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Metal responsive transcription factor 1 (MTF-1) is a zinc-dependent transcription factor involved in the development of pulmonary arterial hypertension (PAH), which is a life-threatening disease characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling. However, little is known about the role and regulatory signaling of MTF-1 in PAH. This study aimed to investigate the effect and mechanism of MTF-1 on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Several techniques including intracellular-free zinc detected by fluorescent indicator-fluozinc-3-AM, western blot, luciferase reporter, and cell proliferation assay were conducted to perform a comprehensive analysis of MTF-1 in proliferation of PASMCs in PAH. Increased cytosolic zinc was shown in monocrotaline (MCT)-PASMCs and ZnSO₄-treated PASMCs, which led to overexpression and overactivation of MTF-1, followed by the up-regulation of placental growth factor (PlGF). Elevated MTF-1 and PlGF were observed in western blot, and high transcriptional activity of MTF-1 was confirmed by luciferase reporter in ZnSO4-treated cells. Further investigation of cell proliferation revealed a favorable impact of zinc ions on PASMCs proliferation, with the deletion of Mtf-1/Plgf attenuating ZnSO4-induced proliferation. Flow cytometry analysis showed that blockade of PKC signaling inhibited the cell cycle of MCT-PASMCs and ZnSO4-treated PASMCs. The Zinc/PKC/MTF-1/PlGF pathway is involved in the up-regulatory effect on the PASMCs proliferation in the process of PAH. This study provided novel insight into zinc homeostasis in the pathogenesis of PAHs, and the regulation of MTF-1 might be a potential target for therapeutic intervention in PAH.
Collapse
Affiliation(s)
- Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Junping Liu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
3
|
Luo L, Wu J, Lin T, Lian G, Wang H, Gao G, Xie L. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension. Aging (Albany NY) 2021; 13:11954-11968. [PMID: 33886502 PMCID: PMC8109122 DOI: 10.18632/aging.202898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Metabonomics has been widely used to analyze the initiation, progress, and development of diseases. However, application of metabonomics to explore the mechanism of pulmonary arterial hypertension (PAH) are poorly reported. This study aimed to investigate the influence of atorvastatin (Ato) on metabolic pattern of rats with pulmonary hypertension. METHODS PAH animal model was established using monocrotaline (MCT). The mean pulmonary artery pressure (mPAP) and right ventricular hypertrophy index (RVHI) were measured. The microstructure of pulmonary arterioles was observed by HE staining. Nuclear magnetic resonance was used to detect and analyze the serum metabolites. The levels of glycogen synthase kinase-3β (GSK-3β), hexokinase 2 (HK-2), sterol regulatory element-binding protein 1c (SREBP-1c), and carnitine palmitoyltransferase I (CPT-1) in the lung tissues were measured. RESULTS Ato significantly improved lung function by decreasing mPAP, RVHI, wall thickness, and wall area. Differences in metabolic patterns were observed among normal, PAH, and Ato group. The levels of GSK-3β and SREBP-1c were decreased, but HK-2 and CPT-1 were increased in the group PAH. Ato treatment markedly reversed the influence of MCT. CONCLUSION Ato significantly improved the pulmonary vascular remodeling and pulmonary hypertension of PAH rats due to its inhibition on Warburg effect and fatty acid β oxidation.
Collapse
Affiliation(s)
- Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianmin Wu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Taijie Lin
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gufeng Gao
- Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
5
|
Wang J, Lian G, Luo L, Wang T, Xu C, Wang H, Xie L. Role of 20-hydroxyeicosatetraenoic acid in pulmonary hypertension and proliferation of pulmonary arterial smooth muscle cells. Pulm Pharmacol Ther 2020; 64:101948. [PMID: 32949704 DOI: 10.1016/j.pupt.2020.101948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the level of 20-Hydroxyeicosatetraenoic acid (20-HETE) in model of pulmonary hypertension (PH) and its effect on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). METHODS Twenty male Sprague-Dawley rats were randomly divided into two groups, including control group and PH group. PH was induced by intra-peritoneal injection of 20 mg/kg monocrotaline (MCT) twice in a week in 10 rats, and control rats were given equal amount of saline. Mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling index (WA%, WT%) were assessed at the week 4. The levels of 20-HETE were analysed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). EdU test was used to determine the proliferation of PASMCs. Intracellular levels of reactive oxygen species (ROS) were detected using DCFH-DA dye. RESULTS (1) Prominent right ventricular hypertrophy and pulmonary vascular remodeling were verified in PH rats; (2) 20-HETE levels in lung tissue and serum were significantly lifted in PH rats; (3) Increased 20-HETE levels in cell culture supernatants were significantly noted in hypoxia condition; (4) Proliferation of PASMCs was induced by 20-HETE and hypoxia, and was inhibited by HET0016; (5) Production of ROS was elevated by 20-HETE and hypoxia, and was reduced by HET0016; CONCLUSION: Vascular remodeling was demonstrated in PH rats. 20-HETE levels were significantly increased in PH rats and under hypoxia condition. PASMCs proliferation and ROS production were elevated by 20-HETE and could be inhibited by HET0016, a specific inhibitor of 20-HETE. Taken together, changes in the level of 20-HETE may be related to the excessive proliferation of PASMCs in PH rats.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Changsheng Xu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Huajun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.
| |
Collapse
|
6
|
Combination of Dichloroacetate and Atorvastatin Regulates Excessive Proliferation and Oxidative Stress in Pulmonary Arterial Hypertension Development via p38 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6973636. [PMID: 32617141 PMCID: PMC7306075 DOI: 10.1155/2020/6973636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease generally characterized by pulmonary artery remodeling. Mitochondrial metabolic disorders have been implicated as a critical regulator of excessively proliferative- and apoptosis-resistant phenotypes in pulmonary artery smooth muscle cells (PASMCs). Dichloroacetate (DCA) is an emerging drug that targets aerobic glycolysis in tumor cells. Atorvastatin (ATO) is widely used for hyperlipemia in various cardiovascular diseases. Considering that DCA and ATO regulate glucose and lipid metabolism, respectively, we hypothesized that the combination of DCA and ATO could be a potential treatment for PAH. A notable decrease in the right ventricular systolic pressure accompanied by reduced right heart hypertrophy was observed in the DCA/ATO combination treatment group compared with the monocrotaline treatment group. The DCA/ATO combination treatment alleviated vascular remodeling, thereby suppressing excessive PASMC proliferation and macrophage infiltration. In vitro, both DCA and ATO alone reduced PASMC viability by upregulating oxidative stress and lowering mitochondrial membrane potential. Surprisingly, when combined, DCA/ATO was able to decrease the levels of reactive oxygen species and cell apoptosis without compromising PASMC proliferation. Furthermore, suppression of the p38 pathway through the specific inhibitor SB203580 attenuated cell death and oxidative stress at a level consistent with that of DCA/ATO combination treatment. These observations suggested a complementary effect of DCA and ATO on rescuing PASMCs from a PAH phenotype through p38 activation via the regulation of mitochondrial-related cell death and oxidative stress. DCA in combination with ATO may represent a novel therapeutic strategy for PAH treatment.
Collapse
|
7
|
Xiao G, Wang T, Zhuang W, Ye C, Luo L, Wang H, Lian G, Xie L. RNA sequencing analysis of monocrotaline-induced PAH reveals dysregulated chemokine and neuroactive ligand receptor pathways. Aging (Albany NY) 2020; 12:4953-4969. [PMID: 32176619 PMCID: PMC7138548 DOI: 10.18632/aging.102922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious disease characterized by elevated pulmonary artery pressure, inflammatory cell infiltration and pulmonary vascular remodeling. However, little is known about the pathogenic mechanisms underlying the disease onset and progression. RNA sequencing (RNA-seq) was used to identify the transcriptional profiling in control and rats injected with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 23200 transcripts and 280, 1342, 908 and 3155 differentially expressed genes (DEGs) were identified at the end of week 1, 2, 3 and 4, of which Svop was the common top 10 DEGs over the course of PAH progression. Functional enrichment analysis of DEGs showed inflammatory/immune response occurred in the early stage of PAH development. KEGG pathway enrichment analysis of DEGs showed that cytokine-cytokine receptor interaction and neuroactive ligand-receptor interaction were in the initiation and progression of PAH. Further analysis revealed impaired expression of cholinergic receptors, adrenergic receptors including alpha1, beta1 and beta2 receptor, and dysregulated expression of γ-aminobutyric acid receptors. In summary, the dysregulated inflammation/immunity and neuroactive ligand receptor signaling pathways may be involved in the onset and progression of PAH.
Collapse
Affiliation(s)
- Genfa Xiao
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Department of Geriatric Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Tingjun Wang
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Department of Geriatric Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Wei Zhuang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Chaoyi Ye
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Li Luo
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Department of Geriatric Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Liangdi Xie
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Department of Geriatric Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| |
Collapse
|
8
|
Li J, Wang H, Li J, Liu Y, Ding H. LC-MS analysis of Myrica rubra extract and its hypotensive effects via the inhibition of GLUT 1 and activation of the NO/Akt/eNOS signaling pathway. RSC Adv 2020; 10:5371-5384. [PMID: 35498305 PMCID: PMC9049140 DOI: 10.1039/c9ra05895h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
In the area of medicine food homology, Myrica rubra ((Lour.) Siebold & Zucc.) has been used in medicine as an astringent and anti-diarrheal. However, there are few in-depth studies evaluating the antihypertensive chemical components and antihypertensive mechanisms of Myrica rubra. Thus, the aim in this study was to assess the protective effects of an ethanol extract of bayberry (BE) on spontaneous hypertension in rats. In this study, liquid chromatography-mass spectroscopy (LC-MS) coupled with biochemical assays and western blot have been employed to study the protective effects of BE against hypertension. A total of 28 compounds were identified in BE. According to this study, treatment with BE (2 g kg-1) resulted in the potent and persistent reduction of high blood pressure, even after drug withdrawal. The results indicate that the mechanisms of action might involve protection against damage to the vascular structure. Bayberry extract could enhance the endothelium-independent vascular function, inhibiting the abnormal proliferation of smooth muscle by inhibition of glucose transporter-1 (GLUT 1) and regulation of nitric oxide (NO)/serine/threonine kinases (Akt)/endothelial nitric oxide synthase (eNOS). The results of molecular docking and in vitro research indicated six compounds in BE that might be responsible for the antihypertensive effect attributed to GLUT 1, eNOS and Akt, and further in vivo studies are needed to verify this.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Huiling Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Yonggang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| |
Collapse
|
9
|
Kim SE, Yin MZ, Kim HJ, Vorn R, Yoo HY, Kim SJ. Decreased inward rectifier and voltage-gated K + currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:111-119. [PMID: 31908580 PMCID: PMC6940494 DOI: 10.4196/kjpp.2020.24.1.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/15/2022]
Abstract
In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Rany Vorn
- Department of Nursing, Chung-Ang University, Seoul 06974, Korea
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul 06974, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
10
|
Zhuang W, Lian G, Huang B, Du A, Gong J, Xiao G, Xu C, Wang H, Xie L. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol Cell Biochem 2018; 455:169-183. [DOI: 10.1007/s11010-018-3480-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
|
11
|
Zhuang W, Lian G, Huang B, Du A, Xiao G, Gong J, Xu C, Wang H, Xie L. Pulmonary arterial hypertension induced by a novel method: Twice-intraperitoneal injection of monocrotaline. Exp Biol Med (Maywood) 2018; 243:995-1003. [PMID: 30099957 DOI: 10.1177/1535370218794128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) in humans manifests as a chronic process. However, PAH induced by high-dose monocrotaline (MCT) in animals occurs as a subacute process. To establish a chronic PAH model, rats were randomly divided into three groups, control (ctrl), single injection (SI), and twice injection (TI) groups. Rats in the SI group received a single intraperitoneal injection of 40 mg/kg MCT on day 0. Rats in the TI group received twice injections of 20 mg/kg MCT on days 0 and 7. Survival percentage, characteristic changes of pulmonary arterial variables, and right ventricular features were evaluated. Thirty-five days after the first MCT injection, survival percentage in TI group was higher than that in the SI group. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI), pulmonary vascular remodeling, serum tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) were higher either in SI or in TI 28 and 35 days after the first MCT injection. The rats in the SI and TI groups exhibited higher right ventricle end diastolic diameter (RVEDD) and lower adjusted pulmonary artery acceleration time (PAAT/HR), tricuspid annular plane systolic excursion (TAPSE), cardiac output (CO) and right ventricle fractional shortening (RVFS) when compared with controls. However, mPAP, RVHI, TAPSE, PAAT/HR, CO, TNFα, and IL-6 were lower and RVEDD were higher in the TI group than in the SI group. Pulmonary macrophage infiltration and right ventricle (RV) fibrosis were lower in TI than SI groups. The cardiomyocyte cross-sectional area and the beta myosin heavy chain (MYH7) mRNA level of RV were lower in TI than SI, whereas alpha myosin heavy chain (MYH6) was increased. These results show that two intraperitoneal injections of 20 mg/kg MCT with seven days interval could induce a model similar to chronic PAH with increased survival percentage in rats. Impact statement We demonstrated previously that a single intraperitoneal injection of 40 mg/kg MCT produced a subacute, not chronic, PAH model in rats, and the short survival periods of these rats did not represent adequately the chronic PAH seen in humans. To overcome this limitation, in this study, the single dose of 40 mg/kg MCT was divided into twice injections of 20 mg/kg with an interval of seven days. This modified administration of MCT produced an animal model much more similar to chronic PAH with prolonged survival and characteristic changes of structures and function in pulmonary arteries and right ventricles.
Collapse
Affiliation(s)
- Wei Zhuang
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Bangbang Huang
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Apang Du
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Genfa Xiao
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Jin Gong
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Huajun Wang
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| |
Collapse
|
12
|
TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling. Heart Vessels 2018; 33:1094-1105. [PMID: 29511803 PMCID: PMC6096742 DOI: 10.1007/s00380-018-1146-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
Sinoatrial node fibrosis is involved in the pathogenesis of sinus sick syndrome (SSS). Transient receptor potential (TRP) subfamily M member 7 (TRPM7) is implicated in cardiac fibrosis. However, the mechanisms underlying the regulation of sinoatrial node (SAN) fibrosis in SSS by TRPM7 remain unknown. The aim of this study was to investigate the role of angiotensin II (Ang II)/TRPM7/Smad pathway in the SAN fibrosis in rats with SSS. The rat SSS model was established with sodium hydroxide pinpoint pressing permeation. Forty-eight rats were randomly divided into six groups: normal control (ctrl), sham operation (sham), postoperative 1-, 2-, 3-, and 4-week SSS, respectively. The tissue explant culture method was used to culture cardiac fibroblasts (CFs) from rat SAN tissues. TRPM7 siRNA or encoding plasmids were used to knock down or overexpress TRPM7. Collagen (Col) distribution in SAN and atria was assessed using PASM–Masson staining. Ang II, Col I, and Col III levels in serum and tissues or in CFs were determined by ELISA. TRPM7, smad2 and p-smad2 levels were evaluated by real-time PCR, and/or western blot and immunohistochemistry. SAN and atria in rats of the SSS groups had more fibers and higher levels of Ang II, Col I and III than the sham rats. Similar findings were obtained for TRPM7 and pSmad2 expression. In vitro, Ang II promoted CFs collagen synthesis in a dose-dependent manner, and potentiated TRPM7 and p-Smad2 expression. TRPM7 depletion inhibited Ang II-induced p-Smad2 expression and collagen synthesis in CFs, whereas increased TRPM7 expression did the opposite. SAN fibrosis is regulated by the Ang II/TRPM7/Smad pathway in SSS, indicating that TRPM7 is a potential target for SAN fibrosis therapy in SSS.
Collapse
|
13
|
Are statins beneficial for the treatment of pulmonary hypertension? Chronic Dis Transl Med 2017; 3:213-220. [PMID: 29354804 PMCID: PMC5747501 DOI: 10.1016/j.cdtm.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is a condition characterized by vasoconstriction and vascular remodeling with a poor prognosis. The current medical treatments available are supportive care therapy and pulmonary vascular-targeted therapy. Targeted treatments for PH include prostacyclin analogs, endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors; however, these treatments cannot reverse pulmonary vascular remodeling. Recently, many novel treatment options involving drugs such as statins have been emerging. In this review, we attempt to summarize the current knowledge of the role of statins in PH treatment and their potential clinical effects. Many basic researches have proved that statins can be helpful for the treatment of PH both in vitro and in experimental models. The main mechanisms underlying the effects of statins are restoration of endothelial function, attenuation of pulmonary vascular remodeling, regulation of gene expression, regulation of intracellular signaling processes involved in PH, anti-inflammatory responses, and synergy with other targeted drugs. Nevertheless, clinical researches, especially randomized controlled trials for PH are rare. The current clinical researches show contrasting results on the clinical effects of statins in patients with PH. Carefully designed randomized, controlled trials are needed to test the safety and efficacy of statins for PH treatment.
Collapse
|
14
|
Wang T, Lian G, Cai X, Lin Z, Xie L. Effect of prehypertensive losartan therapy on AT1R and ATRAP methylation of adipose tissue in the later life of high‑fat‑fed spontaneously hypertensive rats. Mol Med Rep 2017; 17:1753-1761. [PMID: 29257219 PMCID: PMC5780120 DOI: 10.3892/mmr.2017.8081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/12/2017] [Indexed: 01/04/2023] Open
Abstract
Hypertension is frequently associated with metabolic disorders. The present study was designed to investigate the long-term effect of prehypertensive losartan therapy on metabolic disorders in high-fat-fed spontaneously hypertensive rats (SHRs), and to examine the role of epigenetic regulation of angiotensin II type 1 receptor (AT1R) and AT1 receptor-associated protein (ATRAP) expression in adipose tissue. A total of 32 4-week-old male SHRs were divided into four groups (n=8 rats/group): Standard chow; standard chow + losartan; high-fat diet; and high-fat diet + losartan. At 10 weeks of age, treatment with losartan was discontinued. Rats were followed up until 26 weeks of age. Obesity, dyslipidemia, hyperglycemia, abnormal adipokine secretion, larger adipocytes and decreased expression of markers of adipocyte differentiation were present in high-fat-fed SHRs, and were attenuated in losartan-treated rats. The increased expression and promoter hypomethylation of AT1R subtype a (AT1aR) in the adipose tissue of high-fat-fed SHRs were reversed by treatment with losartan. No difference was observed in the expression and promoter methylation of AT1R subtype b (AT1bR) among the four groups. Decreased expression and promoter hypermethylation of ATRAP were demonstrated in the adipose tissue of high-fat-fed SHRs. However, losartan made no difference to the expression and promoter methylation of ATRAP. Prehypertensive losartan therapy may relieve metabolic disorders in the later life of high-fat-fed SHRs. Differential epigenetic regulation of AT1aR and ATRAP expression through DNA methylation in adipose tissue may be involved in the long-term beneficial effect.
Collapse
Affiliation(s)
- Tingjun Wang
- Fujian Hypertension Research Institute, The First Clinical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Clinical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xiaoqi Cai
- Fujian Hypertension Research Institute, The First Clinical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhihong Lin
- Fujian Hypertension Research Institute, The First Clinical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Clinical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
15
|
Luo L, Zheng W, Lian G, Chen H, Li L, Xu C, Xie L. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med 2017; 41:51-60. [PMID: 29115380 PMCID: PMC5746303 DOI: 10.3892/ijmm.2017.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effects of therapy with adiponectin (APN) gene-modified adipose-derived stem cells (ADSCs) on pulmonary arterial hypertension (PAH) in rats and the underlying cellular and molecular mechanisms. ADSCs were successfully isolated from the rats and characterized. ADSCs were effectively infected with the green fluorescent protein (GFP)-empty (ADSCs-V) or the APN-GFP (ADSCs-APN) lentivirus and the APN expression was evaluated by ELISA. Sprague-Dawley rats were administered monocrotaline (MCT) to develop PAH. The rats were treated with MCT, ADSCs, ADSCs-V and ADSCs-APN. Then ADSCs-APN in the lung were investigated by confocal laser scanning microscopy and western blot analysis. Engrafted ADSCs in the lung were located around the vessels. Mean pulmonary arterial pressure (mPAP) and the right ventricular hypertrophy index (RVHI) in the ADSCs-APN-treated mice were significantly decreased as compared with the ADSCs and ADSCs-V treatments. Pulmonary vascular remodeling was assessed. Right ventricular (RV) function was evaluated by echocardiography. We found that pulmonary vascular remodeling and the parameters of RV function were extensively improved after ADSCs-APN treatment when compared with ADSCs and ADSCs-V treatment. Pulmonary artery smooth muscle cells (PASMCs) were isolated from the PAH rats. The antiproliferative effect of APN on PASMCs was assayed by Cell Counting Kit-8. The influence of APN and specific inhibitors on the levels of bone morphogenetic protein (BMP), adenosine monophosphate activated protein kinase (AMPK), and small mothers against decapentaplegia (Smad) pathways was detected by western blot analysis. We found that APN suppressed the proliferation of PASMCs isolated from the PAH rats by regulating the AMPK/BMP/Smad pathway. This effect was weakened by addition of the AMPK inhibitor (compound C) and BMP2 inhibitor (noggin). Therefore, combination treatment with ADSCs and APN effectively attenuated PAH in rats by inhibiting PASMC proliferation and regulating the AMPK/BMP/Smad pathway.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wuhong Zheng
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huaning Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Li
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
16
|
Lin Z, Jiang Z, Huang X, Cai X, Wang H, Xie L. Preventive treatment with atorvastatin ameliorates endothelial dysfunction of small pulmonary arteries in monocrotaline-induced pulmonary hypertensive rats. Clin Exp Hypertens 2017. [PMID: 28628347 DOI: 10.1080/10641963.2016.1254225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhihong Lin
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Zhi Jiang
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xiaodong Huang
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xiaoqi Cai
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Huajun Wang
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
17
|
Lu Y, Guo H, Sun Y, Pan X, Dong J, Gao D, Chen W, Xu Y, Xu D. Valsartan attenuates pulmonary hypertension via suppression of mitogen activated protein kinase signaling and matrix metalloproteinase expression in rodents. Mol Med Rep 2017; 16:1360-1368. [PMID: 28586065 DOI: 10.3892/mmr.2017.6706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
It has previously been demonstrated that the renin-angiotensin system is involved in the pathogenesis and development of pulmonary hypertension (PH). However, the efficacy of angiotensin II type I (AT1) receptor blockers in the treatment of PH is variable. The present study examined the effects of the AT1 receptor blocker valsartan on monocrotaline (MCT)‑induced PH in rats and chronic hypoxia‑induced PH in mice. The results demonstrated that valsartan markedly attenuated development of PH in rats and mice, as indicated by reduced right ventricular systolic pressure, diminished lung vascular remodeling and decreased right ventricular hypertrophy, compared with vehicle treated animals. Immunohistochemical analyses of proliferating cell nuclear antigen expression revealed that valsartan suppressed smooth muscle cell proliferation. Western blot analysis demonstrated that valsartan limited activation of p38, c‑Jun N‑terminal kinase 1/2 and extracellular signal‑regulated kinase 1/2 signaling pathways and significantly reduced MCT‑induced upregulation of pulmonary matrix metalloproteinases‑2 and ‑9, and transforming growth factor‑β1 expression. The results suggested that valsartan attenuates development of PH in rodents by reducing expression of extracellular matrix remodeling factors and limiting smooth muscle cell proliferation to decrease pathological vascular remodeling. Therefore, valsartan may be a valuable future therapeutic approach for the treatment of PH.
Collapse
Affiliation(s)
- Yuyan Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Haipeng Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Yuxi Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xin Pan
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jia Dong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Di Gao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wei Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
18
|
Bokma JP, Winter MM, Kornaat EM, Vliegen HW, van Dijk AP, van Melle JP, Meijboom FJ, Post MC, Berbee JK, Zwinderman AH, Mulder BJ, Bouma BJ. Right vEntricular Dysfunction in tEtralogy of Fallot: INhibition of the rEnin-angiotensin-aldosterone system (REDEFINE) trial: Rationale and design of a randomized, double-blind, placebo-controlled clinical trial. Am Heart J 2017; 186:83-90. [PMID: 28454836 DOI: 10.1016/j.ahj.2016.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/24/2016] [Indexed: 01/10/2023]
Abstract
Renin-angiotensin-aldosterone system (RAAS) inhibition with angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors is beneficial in patients with acquired left ventricular dysfunction. Adult patients with tetralogy of Fallot (TOF) with right ventricular (RV) dysfunction are at high risk for heart failure, arrhythmias, and sudden cardiac death. However, the efficacy of RAAS inhibition has not been established in these patients. METHODS The REDEFINE is an investigator-initiated, multicenter, prospective, randomized, double-blind, placebo-controlled trial to study the effects of the angiotensin II receptor blocker losartan (target dosage of 150 mg once daily) in adult patients with TOF. Patients with RV dysfunction in the absence of severe valvular dysfunction are eligible for inclusion. The primary end point is the change in RV ejection fraction after 18 to 24 months, as measured by cardiovascular magnetic resonance imaging. In addition, laboratory measurements, echocardiography, and cardiopulmonary exercise testing are performed. CONCLUSION The REDEFINE trial will study the effects of RAAS inhibition with losartan in TOF patients with RV dysfunction.
Collapse
|
19
|
Statin therapy improves survival in patients with severe pulmonary hypertension: a propensity score matching study. Heart Vessels 2017; 32:969-976. [DOI: 10.1007/s00380-017-0957-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
|
20
|
Zhang Y, Zeng W, Cheng S, Chen Z, Xue J, Wang Q, Ou M, Cheng K. Efficacy and Safety of Statins for Pulmonary Hypertension: A Meta-Analysis of Randomised Controlled Trials. Heart Lung Circ 2016; 26:425-432. [PMID: 27769753 DOI: 10.1016/j.hlc.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a serious disease, and treatment is a continuing challenge. Some in vitro and in vivo studies identified that statins were effective for PH. However, results of some randomised controlled trials (RCTs) have been controversial. The objective of our study was to clarify whether statins are effective and safe for pulmonary hypertension. METHODS We systematically searched for eligible RCTs from PubMed, EMBASE, Web of Science, and the Cochrane Library during January 2016. Two reviewers independently extracted data. Standard mean differences (SMDs) and weighted mean differences (WMDs) with 95% confidence intervals (CIs) were estimated for continuous data (exercise capacity cardiac, pulmonary arterial pressure (PAP), cardiac index, and low-density lipoprotein (LDL)). Risk ratios (RRs) were estimated for dichotomous data (adverse events and clinical deterioration). RESULTS A total of 496 patients from six RCTs were included. Low-density lipoprotein in the statin group decreased significantly compared with the placebo group (WMD = -22.79; 95% CI: -34.33 ∼ -11.24). However, we did not find a statistically significant effect on exercise capacity (SMD = 0.18; 95% CI: -0.34 - 0.71), PAP (WMD = -3.01; 95% CI: -8.68 - 2.65), or CI (WMD = -0.04; 95% CI: -0.15 - 0.23). Additionally, there was no difference between statins and placebo with respect to hepatic injury (RR: 1.12; 95% CI: 0.43 - 2.92), myalgia (RR: 0.81; 95% CI: 0.32 - 2.03), or clinical deterioration (RR: 0.98; 95% CI: 0.58 - 1.67). CONCLUSIONS Statin treatment appears to be safe but may have no effect on PH.
Collapse
Affiliation(s)
- Yitao Zhang
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Weijie Zeng
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| | - Shiyao Cheng
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zhichong Chen
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Jiaojie Xue
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Qing Wang
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Maode Ou
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Kanglin Cheng
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
21
|
Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. Pharmacol Ther 2016; 164:195-203. [DOI: 10.1016/j.pharmthera.2016.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Li X, Li J, Li Z, Sang Y, Niu Y, Zhang Q, Ding H, Yin S. Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the l-NAME-induced hypertensive rat model. Food Funct 2016; 7:2398-408. [PMID: 27153123 DOI: 10.1039/c6fo00288a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Despite major scientific advances in its prevention, treatment and care, hypertension remains a serious condition that might lead to long-term complications such as heart disease and stroke. The great majority of forms of hypertension eventually result from an increased vasomotor tone activity that is regulated by endothelial NOS (eNOS) in vascular endothelium. Here, we examined the effect of fucoidan on eNOS activation in human umbilical vein endothelial cells (HUVECs). We also examined the effects of functional components of Undaria pinnatifida fucoidan on blood pressure and vascular function in eNOS inhibition-induced hypertensive rats in vivo. Our results suggest that fucoidan increased nitric oxide production by activating eNOS and Akt phosphorylation, which could be impaired by Akt or eNOS inhibitors. In the hypertensive rat model, treatment of fucoidan resulted in potent and persistent reduction of high blood pressure (BP) even after drug withdrawal. Our results showed that the mechanisms might involve protection against vascular structure damage, enhanced endothelium-independent vascular function and inhibition of abnormal proliferation of smooth muscle cells, which are mediated by the Akt-eNOS signaling pathway. Moreover, fucoidan treatment reduced the vascular inflammation and oxidative stress control caused by iNOS expression. Together, these results support a putative role of fucoidan in hypertension prevention and treatment.
Collapse
Affiliation(s)
- Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
(1)H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats. DISEASE MARKERS 2016; 2016:5803031. [PMID: 27057080 PMCID: PMC4745193 DOI: 10.1155/2016/5803031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
AIMS To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). METHODS Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. RESULTS The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. CONCLUSIONS Metabolic dysfunction is involved in the development and progression of PAH.
Collapse
|
24
|
Liang M, Li H, Zheng S, Ning J, Xu C, Wang H, Xie L. Comparison of early and delayed transplantation of adipose tissue-derived mesenchymal stem cells on pulmonary arterial function in monocrotaline-induced pulmonary arterial hypertensive rats. Eur Heart J Suppl 2015. [DOI: 10.1093/eurheartj/suv049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Krishna RK, Issa O, Saha D, Macedo FYB, Correal B, Santana O. Pleiotropic effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors in pulmonary diseases: A comprehensive review. Pulm Pharmacol Ther 2015; 30:134-40. [DOI: 10.1016/j.pupt.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
|
26
|
Ouyang QF, Han Y, Lin ZH, Xie H, Xu CS, Xie LD. Fluvastatin upregulates the α 1C subunit of CaV1.2 channel expression in vascular smooth muscle cells via RhoA and ERK/p38 MAPK pathways. DISEASE MARKERS 2014; 2014:237067. [PMID: 25614710 PMCID: PMC4295146 DOI: 10.1155/2014/237067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
Abstract
Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis. And this process has been related to remodeling of L-type calcium channel (LTCC). We attempted to investigate whether fluvastatin has any effect on VSMC proliferation and LTCCα 1C subunit (LTCCα 1C) expression as well as the potential mechanisms involved. The VSMCs proliferation was assayed by osteopontin immunofluorescent staining and [(3)H]-thymidine incorporation. The cell cycle was detected by flow cytometric analysis. The activity of RhoA was determined with pull-down assay. MAPK activity and LTCCα 1C expression were assessed by western blotting. We demonstrated fluvastatin prevented the VSMCs dedifferentiating into a proliferative phenotype and induced cell cycle arrest in the G0/G1 phase in response to PDGF-BB stimulation. Fluvastatin dose-dependently reversed the downregulation of LTCCα 1C expression induced by PDGF-BB. Inhibition of ROCK, ERK, or p38 MAPK activation largely enhanced the upregulation effect of fluvastatin (P < 0.01). However, blockade of JNK pathway had no effect on LTCCα 1C expression. We concluded LTCCα 1C was a VSMC contractile phenotype marker gene. Fluvastatin upregulated LTCCα 1C expression, at least in part, by inhibiting ROCK, ERK1/2, and p38 MAPK activation. Fluvastatin may be a potential candidate for preventing or treating vascular diseases.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Cycle Checkpoints
- Cell Proliferation
- Fatty Acids, Monounsaturated/pharmacology
- Fluvastatin
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Indoles/pharmacology
- MAP Kinase Signaling System
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Platelet-Derived Growth Factor/physiology
- Protein Transport/drug effects
- Rats, Inbred SHR
- Up-Regulation/drug effects
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Qiu-Fang Ouyang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
- Ultrasound Department, The Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, China
| | - Ying Han
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Zhi-Hong Lin
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Hong Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Chang-Sheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Liang-Di Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| |
Collapse
|
27
|
Minareci E, Sadan G. An evaluation of vardenafil as a calcium channel blocker in pulmonary artery in rats. Indian J Pharmacol 2014; 46:185-90. [PMID: 24741191 PMCID: PMC3987188 DOI: 10.4103/0253-7613.129315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/14/2013] [Accepted: 01/21/2014] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Vardenafil was reported to relax rat pulmonary artery through endothelium-dependent mechanisms. The aim of this in vitro study was to investigate other related mechanisms for this effect. MATERIALS AND METHODS Endothelium-intact and denuded artery rings were suspended in order to record isometric tension. In the rings with or without endothelium, the concentration-response curves for vardenafil were generated. In the rings without endothelium the contractile response induced by phenylephrine (Phe) or KCl was assessed in the presence or absence of vardenafil. In the last set of experiments, pulmonary artery rings were exposed to calcium-free isotonic depolarizing solution and the contractile response induced by the addition of calcium was evaluated in the presence or absence of vardenafil, nifedipine, verapamil or 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ). RESULTS Vardenafil attenuated pulmonary artery contraction induced by phenylephrine in the presence and absence of endothelium. In addition, vardenafil attenuated both Phe or KCl-induced contraction but, it's effect on the KCl dose-response curve was more significant. Vardenafil also inhibited the contractile response induced by calcium in a dose-dependent manner. Addition of nifedipine or verapamil did not significantly alter this effect while ODQ incubation significantly inhibited vardenafil-induced relaxation. CONCLUSION From these findings, it was proposed that vardenafil relaxed rat pulmonary artery through inhibiting calcium influx.
Collapse
Affiliation(s)
- Edibe Minareci
- Department of Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Gulay Sadan
- Department of Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
28
|
Luo L, Lin T, Zheng S, Xie Z, Chen M, Lian G, Xu C, Wang H, Xie L. Adipose-derived stem cells attenuate pulmonary arterial hypertension and ameliorate pulmonary arterial remodeling in monocrotaline-induced pulmonary hypertensive rats. Clin Exp Hypertens 2014; 37:241-8. [PMID: 25271670 DOI: 10.3109/10641963.2014.954710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the effect of adipose-derived stem cells (ADSCs) transplantation effects on structural remodeling and pulmonary artery pressure in monocrotaline (MCT)-induced pulmonary hypertensive rats. In the first experiment, 32 male Sprague-Dawley (SD) rats were randomly divided into four groups (n = 8/group): 3 ADSCs treated groups and normal control (Ctrl). ADSCs were administered through the left jugular vein at 10(5), 10(6) and 10(7) cells, respectively, and a cell density of 10(6)cells/ml was shown to be optimal. The GFP-tagged ADSCs were identified in the lungs and differentiated into endothelial-like cells. In the second experiment, 96 male SD rats were randomly divided into three groups (n = 32/group): Ctrl, MCT-induced pulmonary arterial hypertension (PAH), and PAH treated with ADSCs (ADSCs). Two weeks post-MCT administration, the ADSCs group received 1 × 10(6) ADSCs via the external jugular vein. Compared to PAH rats, mean pulmonary arterial pressure was decreased in rats at 1, 2, and 3 weeks after ADSCs-treatment (18.63 ± 2.15 mmHg versus 24.53 ± 2.90 mmHg; 23.07 ± 2.84 mmHg versus 33.18 ± 2.30 mmHg; 22.98 ± 2.34 mmHg versus 36.38 ± 3.28 mmHg, p < 0.05). Meanwhile, the right heart hypertrophy index (36.2 1 ± 4.27% versus 41.01 ± 1.29%; 39.47 ± 4.02% versus 48.75 ± 2 .13%; 41.02 ± 0.9% versus 50.52 ± 1.49%, p < 0.05, respectively), ratio of wall/lumen thickness, as well as the wall/lumen area were significantly reduced in PAH rats at these time points following ADSCs-treatment, as compared with untreated PAH rats. In summary, ADSCs may colonize the pulmonary arteries, attenuate pulmonary arterial hypertension and ameliorate pulmonary arterial remodeling.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University , Fuzhou , P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Becker MO, Kill A, Kutsche M, Guenther J, Rose A, Tabeling C, Witzenrath M, Kühl AA, Heidecke H, Ghofrani HA, Tiede H, Schermuly RT, Nickel N, Hoeper MM, Lukitsch I, Gollasch M, Kuebler WM, Bock S, Burmester GR, Dragun D, Riemekasten G. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Am J Respir Crit Care Med 2014; 190:808-17. [DOI: 10.1164/rccm.201403-0442oc] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Adebiyi A, Thomas-Gatewood CM, Leo MD, Kidd MW, Neeb ZP, Jaggar JH. An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension. Hypertension 2012; 60:1213-9. [PMID: 23045459 DOI: 10.1161/hypertensionaha.112.198820] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum Ca(2+) and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP(3) receptors control vascular contractility in systemic arteries and IP(3)R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ≈2.7- and 2-fold higher in mesenteric arteries of spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP(3)R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-SHRs and WKY rats. Control, IP(3)-induced and endothelin-1 (ET-1)-induced fluorescence resonance energy transfer between IP3R1 and TRPC3 was higher in SHR than WKY myocytes. IP3-induced cation current was ≈3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and calmodulin and IP(3) receptor binding domain peptide, an IP(3)R-TRP physical coupling inhibitor, reduced IP(3)-induced cation current and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP(3)R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP(3)R1 to TRPC3 channel molecular coupling augments ET-1-induced vasoconstriction during hypertension.
Collapse
Affiliation(s)
- Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Ave, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
31
|
Balakumar P, Mahadevan N. Interplay between statins and PPARs in improving cardiovascular outcomes: a double-edged sword? Br J Pharmacol 2012; 165:373-9. [PMID: 21790534 DOI: 10.1111/j.1476-5381.2011.01597.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Statins are best-selling medications in the management of high cholesterol and associated cardiovascular complications. They inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)-reductase in order to prevent disproportionate cholesterol synthesis. Statins slow the progression of atherosclerosis, prevent the secondary cardiovascular events and improve the cardiovascular outcomes in patients with elevated cholesterol levels. The underlying mechanisms pertaining to the cardioprotective role of statins are linked with numerous pleiotropic actions including inhibition of inflammatory events and improvement of endothelial function, besides an effective cholesterol-lowering ability. Intriguingly, recent studies suggest possible interplay between statins and nuclear transcription factors like PPARs, which should also be taken into consideration while analysing the potential of statins in the management of cardiovascular complications. It could be suggested that statins have two major roles: (i) a well-established cholesterol-lowering effect through inhibition of HMG-CoA-reductase; (ii) a newly explored PPAR-activating property, which could mediate most of cardiovascular protective pleiotropic effects of statins including anti-inflammatory, antioxidant and anti-fibrotic properties. The present review addressed the underlying principles pertaining to the modulatory role of statins on PPARs.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Cardiovascular Pharmacology Division, Department of Pharmacology, Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, India.
| | | |
Collapse
|
32
|
Flues K, Moraes-Silva IC, Mostarda C, Souza PRM, Diniz GP, Moreira ED, Piratello AC, Chaves MLB, De Angelis K, Salemi VMC, Irigoyen MC, Caldini EG. Cardiac and pulmonary arterial remodeling after sinoaortic denervation in normotensive rats. Auton Neurosci 2011; 166:47-53. [PMID: 22079748 DOI: 10.1016/j.autneu.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
Abstract
Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n=8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (α-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11±0.49 vs. 5±0.3 mmHg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8±0.26 vs. 5.02±0.21 mmHg) and RV (5.1±0.21 vs. 4.2±0.12 mmHg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (~6-fold) and III (~5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased α-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage.
Collapse
Affiliation(s)
- K Flues
- Experimental Hypertension Laboratory, Hypertension Unit, Heart Institute, Department of Pathology, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hlavačková L, Janegová A, Uličná O, Janega P, Cerná A, Babál P. Spice up the hypertension diet - curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutr Metab (Lond) 2011; 8:72. [PMID: 22005253 PMCID: PMC3214182 DOI: 10.1186/1743-7075-8-72] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background Increase of blood pressure is accompanied by functional and morphological changes in the vascular wall. The presented study explored the effects of curcuma and black pepper compounds on increased blood pressure and remodeling of aorta in the rat model of experimental NO-deficient hypertension. Methods Wistar rats were administered for 6 weeks clear water or L-NAME (40 mg/kg/day) dissolved in water, piperine (20 mg/kg/day), curcumin (100 mg/kg/day) or their combination in corn oil by oral gavage. The systolic blood pressure was measured weekly. Histological slices of thoracic aorta were stained with hematoxylin and eosin, Mallory's phosphotungstic acid hematoxylin (PTAH), orcein, picrosirius red and van Gieson staining and with antibodies against smooth muscle cells actin. Microscopic pictures were digitally processed and morphometrically evaluated. Results The increase of blood pressure caused by L-NAME was partially prevented by piperine and curcumin, but the effect of their combination was less significant. Animals with hypertension had increased wall thickness and cross-sectional area of the aorta, accompanied by relative increase of PTAH positive myofibrils and decrease of elastin, collagen and actin content. Piperine was able to decrease the content of myofibrils and slightly increase actin, while curcumin also prevented elastin decrease. The combination of spices had similar effects on aortic morphology as curcumin itself. Conclusions Administration of piperine or curcumin, less their combination, is able to partially prevent the increase of blood pressure caused by chronic L-NAME administration. The spices modify the remodeling of the wall of the aorta induced by hypertension. Our results show that independent administration of curcumin is more effective in preventing negative changes in blood vessel morphology accompanying hypertensive disease.
Collapse
Affiliation(s)
- Livia Hlavačková
- Department of Pathology, Faculty of Medicine Comenius University, Sasinkova 4, 81372 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Pei Y, Ma P, Wang X, Zhang W, Zhang X, Zheng P, Yan L, Xu Q, Dai G. Rosuvastatin attenuates monocrotaline-induced pulmonary hypertension via regulation of Akt/eNOS signaling and asymmetric dimethylarginine metabolism. Eur J Pharmacol 2011; 666:165-72. [PMID: 21641341 DOI: 10.1016/j.ejphar.2011.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
Abstract
This study was designed to investigate whether rosuvastatin could attenuate monocrotaline-induced pulmonary hypertension via regulation of Akt/eNOS signaling pathway and asymmetric dimethylarginine (ADMA) metabolism in rats. After a single-dose injection of monocrotaline (60 mg/kg), oral administration of rosuvastatin (5mg/kg) was started from day 1 to day 28 (preventive administration) or from day 15 to day 28 (therapeutic administration), or with vehicle as corresponding controls. 28 days after monocrotaline, significant pulmonary hypertension characterized by pulmonary arterial medial wall thickening, right ventricular hypertrophy and right heart failure was observed. Rosuvastatin (5mg/kg, for 14 days and 28 days) treatment significantly attenuated monocrotaline-induced pulmonary vascular remodeling, right ventricular hypertrophy and dysfunction, and normalized the down-regulated pulmonary Akt/p-Akt and eNOS/p-eNOS expressions, while increased DDAH2 expression accompanied by decreased serum level of ADMA. However expression of PRMT1 and GSK3β/p-GSK3β did not differ among all groups (all P>0.05). We concluded that rosuvastatin inhibits monocrotaline-induced pulmonary hypertension through normalization of Akt, eNOS and DDAH2 expressions, and decreasing the level of ADMA.
Collapse
Affiliation(s)
- Yingzi Pei
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|