1
|
Kisling A, Byrne S, Parekh RU, Melit-Thomas D, de Castro Brás LE, Lust RM, Clemens S, Sriramula S, Katwa LC. Loss of Function in Dopamine D3 Receptor Attenuates Left Ventricular Cardiac Fibroblast Migration and Proliferation in vitro. Front Cardiovasc Med 2021; 8:732282. [PMID: 34708087 PMCID: PMC8542768 DOI: 10.3389/fcvm.2021.732282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests the existence of an intracardiac dopaminergic system that plays a pivotal role in regulating cardiac function and fibrosis through G-protein coupled receptors, particularly mediated by dopamine receptor 3 (D3R). However, the expression of dopamine receptors in cardiac tissue and their role in cardiac fibroblast function is unclear. In this brief report, first we determined expression of D1R and D3R both in left ventricle (LV) tissue and fibroblasts. Then, we explored the role of D3R in the proliferation and migration of fibroblast cell cultures using both genetic and pharmaceutical approaches; specifically, we compared cardiac fibroblasts isolated from LV of wild type (WT) and D3R knockout (D3KO) mice in response to D3R-specific pharmacological agents. Finally, we determined if loss of D3R function could significantly alter LV fibroblast expression of collagen types I (Col1a1) and III (Col3a1). Cardiac fibroblast proliferation was attenuated in D3KO cells, mimicking the behavior of WT cardiac fibroblasts treated with D3R antagonist. In response to scratch injury, WT cardiac fibroblasts treated with the D3R agonist, pramipexole, displayed enhanced migration compared to control WT and D3KO cells. Loss of function in D3R resulted in attenuation of both proliferation and migration in response to scratch injury, and significantly increased the expression of Col3a1 in LV fibroblasts. These findings suggest that D3R may mediate cardiac fibroblast function during the wound healing response. To our knowledge this is the first report of D3R's expression and functional significance directly in mouse cardiac fibroblasts.
Collapse
Affiliation(s)
- Andrew Kisling
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Shannon Byrne
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rohan U Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Deepthy Melit-Thomas
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States.,Department of Cardiovascular Sciences, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
2
|
Cartland SP, Lin RCY, Genner S, Patil MS, Martínez GJ, Barraclough JY, Gloss B, Misra A, Patel S, Kavurma MM. Vascular transcriptome landscape of Trail -/- mice: Implications and therapeutic strategies for diabetic vascular disease. FASEB J 2020; 34:9547-9562. [PMID: 32501591 DOI: 10.1096/fj.201902785r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Circulating plasma TRAIL levels are suppressed in patients with cardiovascular and diabetic diseases. To identify novel targets in vascular metabolic diseases, genome-wide transcriptome of aortic tissue from Trail-/- versus Trail+/+ mice were interrogated. We found 861 genes differentially expressed with TRAIL deletion. Gene enrichment analyses showed many of these genes were related to inflammation, cell-to-cell cytoskeletal interactions, and transcriptional modulation. We identified vascular protective and pathological gene clusters, with Ifi205 as the most significantly reduced vascular protective gene, whereas Glut1, the most significantly increased pathological gene with TRAIL deletion. We hypothesized that therapeutic targets could be devised from such integrated analysis and validated our findings from vascular tissues of diabetic mice. From the differentially expressed gene targets, enriched transcription factor (TF) and microRNA binding motifs were identified. The top two TFs were Elk1 and Sp1, with enrichment to eight gene targets common to both. miR-520d-3p and miR-377-3p were the top enriched microRNAs with TRAIL deletion; with four overlapping genes enriched for both microRNAs. Our findings offer an alternate in silico approach for therapeutic target identification and present a deeper understanding of gene signatures and pathways altered with TRAIL suppression in the vasculature.
Collapse
Affiliation(s)
- Siân P Cartland
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruby C Y Lin
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Scott Genner
- Heart Research Institute, Sydney, NSW, Australia
| | - Manisha S Patil
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gonzalo J Martínez
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia.,División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Jennifer Y Barraclough
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Brian Gloss
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Zhang L, Wei C, Ruan Y, Zhang Y, Zhou Y, Lei D. Serum containing Buyang Huanwu decoction prevents age-associated migration and invasion of human vascular smooth muscle cells by up regulating SIRT1 expression. Biosci Trends 2018; 12:282-290. [PMID: 29952352 DOI: 10.5582/bst.2018.01063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The migration and invasion of vascular smooth muscle cells (VSMCs) caused by advanced aging play an important role in diffuse intimal thickening, facilitate adverse arterial remodeling and contribute to the initiation and progression of cardiovascular diseases. The inhibitory function of Buyang Huanwu decoction (BYHWD) has been found on aortic intimal hyperplasia and VSMC proliferation, but its effect on age-associated migration and invasion remains unknown. Here, we used an in vitro angiotensin II (Ang II)-induced senescence model to study the effects of serum containing BYHWD (BYHWS) on the migratory and invasive capacities, matrix metalloprotease type 2 (MMP-2) expression and modulation of sirtuin1 (SIRT1) signaling in human aorta VSMCs (HA-VAMCs). Our results showed that BYHWS was able to inhibit Ang II-induced migration and invasion, with down-regulation of MMP-2. In addition, manipulation of SIRT1 by either over-expression or siRNA knockdown ameliorated or promoted cellular migration and invasion, respectively. Moreover, BYHWS reversed senescence-mediated decrease of SIRT1 levels and SIRT1 was required for BYHWS regulation on migration and invasion of senescent HA-VAMCs. In summary, our data demonstrated that BYHWS suppressed the migration and invasion of age-associated VSMC via an increase of the SIRT1 level, which provides novel insights for the therapy of age-associated cardiovascular diseases.
Collapse
MESH Headings
- Aging/drug effects
- Aging/physiology
- Angiotensin II/pharmacology
- Aorta/cytology
- Aorta/physiology
- Cardiovascular Diseases/drug therapy
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cellular Senescence/drug effects
- Cellular Senescence/physiology
- Down-Regulation
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gene Knockdown Techniques
- Humans
- Matrix Metalloproteinase 2/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University
| | - Chunshan Wei
- Department of Liver Disease, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine
| | - Yunjun Ruan
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command
| | - Yanan Zhang
- Veterinary medicine, Northeast Agricultural University
| | - Yuliang Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University
| | - Da Lei
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University
| |
Collapse
|
4
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|