1
|
Najafi N, Barangi S, Moosavi Z, Aghaee-Bakhtiari SH, Mehri S, Karimi G. Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 2024; 202:3163-3179. [PMID: 37853305 DOI: 10.1007/s12011-023-03897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Nahid Najafi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sv I, Ru O, Kn K, Ib A, Demorzhi MS, Ta G, Sb S. Low molecular weight NGF mimetic GK-2 normalizes the parameters of glucose and lipid metabolism and exhibits a hepatoprotective effect on a prediabetes model in obese Wistar rats. Clin Exp Pharmacol Physiol 2022; 49:1116-1125. [PMID: 35748804 DOI: 10.1111/1440-1681.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Signs of metabolic syndrome and prediabetes preceding type 2 diabetes are modelled in an experiment using a high-fat diet (HFD). The aim of this work was to study the effect of a low molecular weight systemically active nerve growth factor mimetic, compound GK-2 (hexamethylenediamide bis(N-monosuccinyl-L-glutamyl-L-lysine)), on indicators of abdominal obesity, basal blood glucose level, glucose tolerance, cholesterol and triglyceride blood levels, as well as the morphological structure of the liver in male Wistar rats fed a HFD. Rats were divided into three groups: one of them received standard food (control) and two others were fed a HFD containing 45% fat, 35% carbohydrates and 20% protein, with a total caloric value of 516 kcal/100 g, over 12 weeks. Starting from the 9th week, for the next 4 weeks, one of the HFD groups was treated orally with saline whilst the other group was treated orally with GK-2 at a dose of 5 mg/kg. GK-2 was found to reduce the basal glycemia level and improve glucose tolerance, as well as to reduce the blood level of cholesterol by 30% and that of triglycerides by 28% in comparison with the saline-treated HFD animals. GK-2 reduced the degree of abdominal obesity to the level of the healthy animals and eliminated morphological abnormalities in the liver caused by the HFD. The results of the study determine the feasibility of further GK-2 research as a potential agent for prediabetes treatment.
Collapse
Affiliation(s)
- Ivanov Sv
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Ostrovskaya Ru
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Kolyasnikova Kn
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Alchinova Ib
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M S Demorzhi
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Gudasheva Ta
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Seredenin Sb
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
3
|
Wang W, Tang J, Zhong M, Chen J, Li T, Dai Y. HIF-1 α may play a role in late pregnancy hypoxia-induced autism-like behaviors in offspring rats. Behav Brain Res 2021; 411:113373. [PMID: 34048873 DOI: 10.1016/j.bbr.2021.113373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can be caused by various factors. The present study aimed to determine whether prenatal hypoxia can lead to ASD and the role of hypoxia-inducible factor-1α (HIF-1α) in this process. We constructed a prenatal hypoxia model of pregnant rats by piping nitrogen and oxygen mixed gas, with an oxygen concentration of 10 ± 0.5 %, into the self-made hypoxia chamber. Rats were subjected to different extents of hypoxia treatments at different points during pregnancy. The results showed that hypoxia for 6 h on the 17th gestation day is most likely to lead to autistic behavior in offspring rats, including social deficits, repetitive behaviors, and impaired learning and memory. The mRNA expression level of TNF-α also increased in hypoxia-induced autism group and valproic acid (VPA) group. Western blotting analysis showed increased levels of hypoxia inducible factor 1 alpha (HIF-1α) and decreased levels of phosphatase and tensin homolog (PTEN) in the hypoxic-induced autism group. Meanwhile, N-methyl d-aspartate receptor subtype 2 (NR2A) and glutamate ionotropic receptor AMPA type subunit 2 (GluR2) were upregulated in the hypoxic-induced autism group. HIF-1α might play a role in hypoxia-caused autism-like behavior and its regulatory effect is likely to be achieved by regulating synaptic plasticity.
Collapse
Affiliation(s)
- Weiyu Wang
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jinghua Tang
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Min Zhong
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jie Chen
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ying Dai
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
4
|
Hammad AM, Swiss GMS, Hall FS, Hikmat S, Sari Y, Al-Qirim TM, Amawi HA. Ceftriaxone Reduces Waterpipe Tobacco Smoke Withdrawal-induced Anxiety in rats via Modulating the Expression of TNF-α/NFĸB, Nrf2, and GLT-1. Neuroscience 2021; 463:128-142. [PMID: 33836247 DOI: 10.1016/j.neuroscience.2021.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023]
Abstract
Tobacco exposure has been linked to neuroinflammation and adaptive/maladaptive changes in neurotransmitter systems, including in glutamatergic systems. We examined the effects of waterpipe tobacco smoke (WTS) on inflammatory mediators and astroglial glutamate transporters in mesocorticolimbic brain regions including the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). The behavioral consequences of WTS exposure on withdrawal-induced anxiety-like behavior were assessed using elevated plus maze (EPM) and open field (OF) tests. Male Sprague-Dawley rats were randomly assigned to 3 experimental groups: a control group exposed only to standard room air, a WTS exposed group treated with saline vehicle, and a WTS exposed group treated with ceftriaxone. WTS exposure was performed for 2 h/day, 5 days/week, for 4 weeks. Behavioral tests (EPM and OF) were conducted weekly 24 h after WTS exposure, during acute withdrawal. During week 4, rats were given either saline or ceftriaxone (200 mg/kg i.p.) 30 min before WTS exposure. WTS increased withdrawal-induced anxiety, and ceftriaxone attenuated this effect. WTS exposure increased the relative mRNA levels for nuclear factor ĸB (NFĸB), tumor necrosis factor-α (TNF-α), and brain-derived neurotrophic factor (BDNF) in the PFC, NAc and VTA, and ceftriaxone treatment reversed these effects. In addition, WTS decreased the relative mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2), glutamate transporter 1 (GLT-1) and cystine-glutamate transporter (xCT) in PFC, NAc and VTA, and ceftriaxone treatment normalized their expression. WTS caused neuroinflammation, alteration in relative mRNA glutamate transport expression, and increased anxiety-like behavior, and these effects were attenuated by ceftriaxone treatment.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Ghadeer M S Swiss
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suhair Hikmat
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - T M Al-Qirim
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - H A Amawi
- Faculty of Pharmacy, Yarmouk University, Irbid 21110, Jordan
| |
Collapse
|
5
|
Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME. Early Neurotoxic Effects of Inorganic Arsenic Modulate Cortical GSH Levels Associated With the Activation of the Nrf2 and NFκB Pathways, Expression of Amino Acid Transporters and NMDA Receptors and the Production of Hydrogen Sulfide. Front Cell Neurosci 2020; 14:17. [PMID: 32194376 PMCID: PMC7065714 DOI: 10.3389/fncel.2020.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Exposure to toxic metals and metalloids is an important cause of preventable diseases worldwide. Inorganic arsenic (iAs) affects several organs and tissues, causing neurobehavioral alterations in the central nervous system (CNS) that might lead to neurodegeneration. In this work, we wanted to explore the time- and dose-related changes on glutathione (GSH) levels in several regions of the CNS, such as the cortex, striatum, hippocampus, and cerebellum, to identify the initial cellular changes associated to GSH depletion due to iAs exposure. Mice received a single intraperitoneal injection containing 5 or 14 mg/kg sodium arsenite. Animals were killed at 2, 6, and 24 h. Significant depletion of GSH levels was observed in the cortex at 2 and 6 h, while on the striatum, hippocampus, or cerebellum regions, no significant changes were observed. GSH depletion in the cortex was associated with the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NFκB) pathways, which led to the upregulation of xCT, excitatory amino acid carrier 1 (EAAC1), glutamate/aspartate transporter (GLAST), and glial glutamate transporter 1 (GLT-1), and the activation of the transsulfuration pathways, which led to the overproduction of H2S in the cortex and increased levels of GSH in the cortex and cerebellum at 24 h. In the cortex, the N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B were also altered at 24 h. These early effects were not homogeneous among different brain regions and indicate early neurotoxic alterations in the cortex and cerebellum.
Collapse
Affiliation(s)
- Daniela Silva-Adaya
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico.,Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, México, Mexico
| | - Lucio Antonio Ramos-Chávez
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Ciudad de México, México, Mexico
| | - Pavel Petrosyan
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| | - Wendy Leslie González-Alfonso
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| | - Alegna Pérez-Acosta
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
6
|
Valdovinos-Flores C, Limón-Pacheco JH, León-Rodríguez R, Petrosyan P, Garza-Lombó C, Gonsebatt ME. Systemic L-Buthionine -S-R-Sulfoximine Treatment Increases Plasma NGF and Upregulates L-cys/L-cys2 Transporter and γ-Glutamylcysteine Ligase mRNAs Through the NGF/TrkA/Akt/Nrf2 Pathway in the Striatum. Front Cell Neurosci 2019; 13:325. [PMID: 31396052 PMCID: PMC6664075 DOI: 10.3389/fncel.2019.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 01/31/2023] Open
Abstract
Glutathione (GSH) is the most abundant intracellular antioxidant. GSH depletion leads to oxidative stress and neuronal damage in the central nervous system (CNS). In mice, the acute systemic inhibition of GSH synthesis by L-buthionine-S-R-sulfoximine (BSO) triggers a protective response and a subsequent increase in the CNS GSH content. This response might be modulated by a peripheral increment of circulating nerve growth factor (NGF). NGF is an important activator of antioxidant pathways mediated by tropomyosin-related kinase receptor A (TrkA). Here, we report that peripheral administration of BSO increased plasma NGF levels. Additionally, BSO increased NGF levels and activated the NGF/TrkA/Akt pathway in striatal neurons. Moreover, the response in the striatum included an increased transcription of nrf2, gclm, lat1, eaac1, and xct, all of which are involved in antioxidant responses, and L-cys/L-cys2 and glutamate transporters. Using antibody against NGF confirmed that peripheral NGF activated the NGF/TrkA/Akt/Nrf2 pathway in the striatum and subsequently increased the transcription of gclm, nrf2, lat1, eaac1, and xct. These results provide evidence that the reduction of peripheral GSH pools increases peripheral NGF circulation that orchestrates a neuroprotective response in the CNS, at least in the striatum, through the NGF/TrkA/Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge H Limón-Pacheco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Renato León-Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Garza-Lombó C, Petrosyan P, Tapia-Rodríguez M, Valdovinos-Flores C, Gonsebatt ME. Systemic L-buthionine-S-R-sulfoximine administration modulates glutathione homeostasis via NGF/TrkA and mTOR signaling in the cerebellum. Neurochem Int 2018; 121:8-18. [PMID: 30300680 DOI: 10.1016/j.neuint.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Glutathione (GSH) is an essential component of intracellular antioxidant systems that plays a primordial role in the protection of cells against oxidative stress, maintaining redox homeostasis and xenobiotic detoxification. GSH synthesis in the brain is limited by the availability of cysteine and glutamate. Cystine, the disulfide form of cysteine is transported into endothelial cells of the blood-brain barrier (BBB) and astrocytes via the system xc-, which is composed of xCT and the heavy chain of 4F2 cell surface antigen (4F2hc). Cystine is reduced inside the cells and the L-type amino acid transporter 1 (LAT1) transports cysteine from the endothelial cells into the brain, cysteine is transported into the neurons through the excitatory amino acid transporter 3 (EAAT3), also known as excitatory amino acid carrier 1 (EAAC1). The mechanistic/mammalian target of rapamycin (mTOR) and neurotrophins can activate signaling pathways that modulate amino acid transporters for GSH synthesis. The present study found that systemic L-buthionine-S-R-sulfoximine (BSO) administration selectively altered GSH homeostasis and EAAT3 levels in the mice cerebellum. Intraperitoneal treatment of mice with 6 mmol/kg of BSO depleted GSH and GSSG in the liver at 2 h of treatment. The cerebellum, but not other brain regions, exhibited a redox response. The mTOR and the neuronal growth factor (NGF)/tropomyosin receptor kinase A (TrkA) signaling pathways were activated and lead to an increase in the protein levels of the EAAT3 transporter, which was linked to an increase in the GSH/GSSG ratio and GSH concentration in the cerebellum at 0.5 and 2 h, respectively. Therefore, the cerebellum responds to peripheral GSH depletion via activation of the mTOR and NGF/TrkA pathways, which increase the transport of cysteine for GSH synthesis.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
8
|
Kao YH, Lee PH, Chiu TC, Lin YC, Sun CK, Chen PH, Tsai MS. Transcriptome analysis reveals a positive role for nerve growth factor in retinol metabolism in primary rat hepatocytes. Cytokine 2018; 107:74-78. [DOI: 10.1016/j.cyto.2017.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 11/28/2022]
|
9
|
Nerve growth factor upregulates sirtuin 1 expression in cholestasis: a potential therapeutic target. Exp Mol Med 2018; 50:e426. [PMID: 29328070 PMCID: PMC5799797 DOI: 10.1038/emm.2017.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
This study investigated the regulatory role of nerve growth factor (NGF) in sirtuin 1 (SIRT1) expression in cholestatic livers. We evaluated the expression of NGF and its cognate receptors in human livers with hepatolithiasis and the effects of NGF therapy on liver injury and hepatic SIRT1 expression in a bile duct ligation (BDL) mouse model. Histopathological and molecular analyses showed that the hepatocytes of human diseased livers expressed NGF, proNGF (a precursor of NGF), TrkA and p75NTR, whereas only p75NTR was upregulated in hepatolithiasis, compared with non-hepatolithiasis livers. In the BDL model without NGF therapy, p75NTR, but not TrkA antagonism, significantly deteriorated BDL-induced liver injury. By contrast, the hepatoprotective effect of NGF was abrogated only by TrkA and not by p75NTR antagonism in animals receiving NGF therapy. Intriguingly, a positive correlation between hepatic SIRT1 and NGF expression was found in human livers. In vitro studies demonstrated that NGF upregulated SIRT1 expression in mouse livers and human Huh-7 and rodent hepatocytes. Both NGF and proNGF induced protective effects against hydrogen peroxide-induced cytotoxicity in Huh-7 cells, whereas inhibition of TrkA and p75NTR activity prevented oxidative cell death. Mechanistically, NGF, but not proNGF, upregulated SIRT1 expression in human Huh-7 and rodent hepatocytes via nuclear factor (NF)-κB activity, whereas NGF-induced phosphoinositide-3 kinase/Akt, extracellular signal–regulated kinase and NF-κB signaling and SIRT1 activity were involved in its hepatoprotective effects against oxidative injury. These findings suggest that pharmacological manipulation of the NGF/SIRT1 axis might serve as a novel approach for the treatment of cholestatic disease.
Collapse
|
10
|
Lin Y, Wan JQ, Gao GY, Pan YH, Ding SH, Fan YL, Wang Y, Jiang JY. Direct hippocampal injection of pseudo lentivirus-delivered nerve growth factor gene rescues the damaged cognitive function after traumatic brain injury in the rat. Biomaterials 2015; 69:148-57. [DOI: 10.1016/j.biomaterials.2015.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
|
11
|
Cueno ME, Kamio N, Seki K, Kurita-Ochiai T, Ochiai K. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells. Cell Stress Chaperones 2015; 20:709-13. [PMID: 25808460 PMCID: PMC4463921 DOI: 10.1007/s12192-015-0584-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023] Open
Abstract
Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.
Collapse
Affiliation(s)
- Marni E. Cueno
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Noriaki Kamio
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Keisuke Seki
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Tomoko Kurita-Ochiai
- />Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587 Japan
| | - Kuniyasu Ochiai
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| |
Collapse
|
12
|
Addo L, Tanaka H, Yamamoto M, Toki Y, Ito S, Ikuta K, Sasaki K, Ohtake T, Torimoto Y, Fujiya M, Kohgo Y. Hepatic nerve growth factor induced by iron overload triggers defenestration in liver sinusoidal endothelial cells. Biochim Biophys Acta Mol Basis Dis 2014; 1852:175-83. [PMID: 25460199 DOI: 10.1016/j.bbadis.2014.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The fenestrations of liver sinusoidal endothelial cells (LSECs) play important roles in the exchange of macromolecules, solutes, and fluid between blood and surrounding liver tissues in response to hepatotoxic drugs, toxins, and oxidative stress. As excess iron is a hepatotoxin, LSECs may be affected by excess iron. In this study, we found a novel link between LSEC defenestration and hepatic nerve growth factor (NGF) in iron-overloaded mice. By Western blotting, NGF was highly expressed, whereas VEGF and HGF were not, and hepatic NGF mRNA levels were increased according to digital PCR. Immunohistochemically, NGF staining was localized in hepatocytes, while TrkA, an NGF receptor, was localized in LSECs. Scanning electron microscopy revealed LSEC defenestration in mice overloaded with iron as well as mice treated with recombinant NGF. Treatment with conditioned medium from iron-overloaded primary hepatocytes reduced primary LSEC fenestrations, while treatment with an anti-NGF neutralizing antibody or TrkA inhibitor, K252a, reversed this effect. However, iron-loaded medium itself did not reduce fenestration. In conclusion, iron accumulation induces NGF expression in hepatocytes, which in turn leads to LSEC defenestration via TrkA. This novel link between iron and NGF may aid our understanding of the development of chronic liver disease.
Collapse
Affiliation(s)
- Lynda Addo
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroki Tanaka
- Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Masayo Yamamoto
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yasumichi Toki
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Ito
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Katsunori Sasaki
- Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takaaki Ohtake
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoshihiro Torimoto
- Oncology Center, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, Japan
| | - Mikihiro Fujiya
- Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
13
|
Tsai MS, Lin YC, Sun CK, Huang SC, Lee PH, Kao YH. Up-regulation of nerve growth factor in cholestatic livers and its hepatoprotective role against oxidative stress. PLoS One 2014; 9:e112113. [PMID: 25397406 PMCID: PMC4232375 DOI: 10.1371/journal.pone.0112113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023] Open
Abstract
The role of nerve growth factor (NGF) in liver injury induced by bile duct ligation (BDL) remains elusive. This study aimed to investigate the relationship between inflammation and hepatic NGF expression, to explore the possible upstream molecules up-regulating NGF, and to determine whether NGF could protect hepatocytes from oxidative liver injury. Biochemical and molecular detection showed that NGF was up-regulated in cholestatic livers and plasma, and well correlated with systemic and hepatic inflammation. Conversely, systemic immunosuppression reduced serum NGF levels and resulted in higher mortality in BDL-treated mice. Immunohistochemistry showed that the up-regulated NGF was mainly localized in parenchymal hepatocytes. In vitro mechanistic study further demonstrated that TGF-β1 up-regulated NGF expression in clone-9 and primary rat hepatocytes. Exogenous NGF supplementation and endogenous NGF overexpression effectively protected hepatocytes against TGF-β1- and oxidative stress-induced cell death in vitro, along with reduced formation of oxidative adducted proteins modified by 4-HNE and 8-OHdG. TUNEL staining confirmed the involvement of anti-apoptosis in the NGF-exhibited hepatoprotection. Moreover, NGF potently induced Akt phosphorylation and increased Bcl-2 to Bax ratios, whereas these molecular alterations by NGF were only seen in the H2O2-, but not TGF-β1-treated hepatocytes. In conclusion, NGF exhibits anti-oxidative and hepatoprotective effects and is suggested to be therapeutically applicable in treating cholestatic liver diseases.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan
- The School of Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Education, E-DA Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (PHL); (YHK)
| | - Ying-Hsien Kao
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan
- * E-mail: (PHL); (YHK)
| |
Collapse
|
14
|
Abstract
Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Qiu T, Yin Y, Li B, Xie L, Yan Q, Dai H, Wang X, Li S. PDLLA/PRGD/β-TCP conduits build the neurotrophin-rich microenvironment suppressing the oxidative stress and promoting the sciatic nerve regeneration. J Biomed Mater Res A 2014; 102:3734-43. [PMID: 24408878 DOI: 10.1002/jbm.a.35078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/23/2013] [Accepted: 12/31/2013] [Indexed: 12/16/2022]
Abstract
A novel nerve guidance conduit comprising poly{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]} (PRGD), poly (d,l-lactic acid) (PDLLA) and β-tricalcium phosphate (β-TCP) was constructed to facilitate the peripheral nerve regeneration. From the comparative study, PDLLA/PRGD/β-TCP conduit achieved the best recovery in regard of the ultrastructure observation and the SFI evaluation. At the first stage of the injury (7 days), the maximum expression augments in ZnSOD (6.4 folds) and GPX4 (6.8 folds) were observed in PDLLA/PRGD/β-TCP group; while striking rise in actin (6.8 folds), tubulin (5.6 folds), and ERM components expressions were observed later (35 days). Meanwhile, compared with PDLLA and PDLLA/PRGD conduits, PDLLA/PRGD/β-TCP conduits achieved the highest local nerve growth factor (NGF) content and an accumulating BDNF content. We speculated that addition of RGD and β-TCP in the composites were the main positive factors to build the microenvironment rich in NGF and BDNF, which help to counteract with the oxidative stress and to boost the cytoskeletal protein expressions. Therefore, PDLLA/PRGD/β-TCP could be promising composites used in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Tong Qiu
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu B, Chen X, Wang ZQ, Tong WM. DNA damage and oxidative injury are associated with hypomyelination in the corpus callosum of newborn Nbn(CNS-del) mice. J Neurosci Res 2013; 92:254-66. [PMID: 24272991 DOI: 10.1002/jnr.23313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 01/16/2023]
Abstract
Nijmegen breakage syndrome (NBS), caused by mutation of the Nbn gene, is a recessive genetic disorder characterized by immunodeficiency, elevated sensitivity to ionizing radiation, chromosomal instability, microcephaly, and high predisposition to malignancies. To explore the underlying molecular mechanisms of NBS microcephaly, Frappart et al. previously inactivated Nbn gene in the central nervous system (CNS) of mice by the nestin-Cre targeting gene system and generated Nbn(CNS-del) mice. Here we first report that Nbn gene inactivation induces the defective proliferation and enhanced apoptosis of the oligodendrocyte precursor cells (OPCs), contributing to the severe hypomyelination of the nerve fibers of the corpus callosum. Under conditions of DNA damage and oxidative stress, the distinct regulatory roles of ATM-Chk2 signaling and AKT/mTOR signaling are responsible for the defective proliferation and enhanced apoptosis of the Nbn-deficient OPCs. In addition, specific HDAC isoforms may play distinctive roles in regulating the myelination of the Nbn-deficient OPCs. However, brain-derived neurotrophic factor and nerve growth factor stimulation attenuates the oxidative stress and thereby increases the proliferation of the Nbn-deficient OPCs, which is accompanied by upregulation of the AKT/mTOR/P70S6K signaling pathway. Taken together, these findings demonstrate that DNA damage and oxidative stress resulting from Nbn gene inactivation are associated with hypomyelination of the nerve fibers of corpus callosum.
Collapse
Affiliation(s)
- B Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|