1
|
Involvement of the miR-137-3p/CAPN-2 Interaction in Ischemia-Reperfusion-Induced Neuronal Apoptosis through Modulation of p35 Cleavage and Subsequent Caspase-8 Overactivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2616871. [PMID: 33456665 PMCID: PMC7787780 DOI: 10.1155/2020/2616871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Background Neuron survival after ischemia-reperfusion (IR) injury is the primary determinant of motor function prognosis. MicroRNA- (miR-) based gene therapy has gained attention recently. Our previous work explored the mechanisms by which miR-137-3p modulates neuronal apoptosis in both in vivo and in vitro IR models. Methods IR-induced motor dysfunction and spinal calpain (CAPN) subtype expression and subcellular localization were detected within 12 h post IR. Dysregulated miRs, including miR-137-3p, were identified by miR microarray analysis and confirmed by PCR. A luciferase assay confirmed CAPN-2 as a corresponding target of miR-137-3p, and their modulation of motor function was evaluated by intrathecal injection with synthetic miRs. CAPN-2 activity was measured by the intracellular Ca2+ concentration and mean fluorescence intensity in vitro. Neuronal apoptosis was detected by flow cytometry and TUNEL assay. The activities of p35, p25, Cdk5, and caspase-8 were evaluated by ELISA and Western blot after transfection with specific inhibitors and miRs. Results The IR-induced motor dysfunction time course was closely associated with upregulated expression of the CAPN-2 protein, which was mainly localized in neurons. The miR-137-3p/CAPN-2 interaction was confirmed by luciferase assay. The miR-137-3p mimic significantly improved IR-induced motor dysfunction and decreased CAPN-2 expression, even in combination with recombinant rat calpain-2 (rr-CALP2) injection, whereas the miR-137-3p inhibitor reversed these effects. Similar changes in the intracellular Ca2+ concentration, CAPN-2 expression, and CAPN-2 activity were observed when cells were exposed to oxygen-glucose deprivation and reperfusion (OGD/R) and transfected with synthetic miRs in vitro. Moreover, double fluorescence revealed identical neuronal localization of CAPN-2, p35, p25, and caspase-8. The decrease in CAPN-2 expression and activity was accompanied by the opposite changes in p35 activity and protein expression in cells transfected with the miR-137-3p mimic, roscovitine (a Cdk5 inhibitor), or Z-IETD-FMK (a caspase-8 inhibitor). Correspondingly, the abovementioned treatments resulted in a higher neuron survival rate than that of untreated neurons, as indicated by decreases in the apoptotic cell percentage and p25, Cdk5, caspase-8, and caspase-3 protein expression. Conclusions The miR-137-3p/CAPN-2 interaction modulates neuronal apoptosis during IR injury, possibly by inhibiting CAPN-2, which leads to p35 cleavage and inhibition of subsequent p25/Cdk5 and caspase-8 overactivation.
Collapse
|
2
|
Cho SO, Lim JW, Kim H. Oxidative stress induces apoptosis via calpain- and caspase-3-mediated cleavage of ATM in pancreatic acinar cells. Free Radic Res 2019; 54:799-809. [PMID: 31401888 DOI: 10.1080/10715762.2019.1655145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress-induced DNA cleavage and apoptosis in pancreatic acinar cells has been implicated in the pathogenesis of acute pancreatitis. Thus, an efficient DNA repair process is key to prevention of apoptotic pancreatic acinar cell death. Ataxia telangiectasia mutated (ATM), a sensor of DNA breaks, functions by recruiting DNA repair proteins to initiate the DNA repair process. In the present study, we investigated whether H2O2 produced by the action of glucose oxidase on α-D-glucose (G/GO) induces apoptosis in pancreatic acinar AR42J cells through an alteration of the level of ATM. As a result, G/GO induced apoptosis by promoting a loss of cell viability, increase in Bax, decrease in Bcl-2, cleavage of poly (ADP-ribose) polymerase (PARP) and fragmentation of DNA. In addition, ATM cleavage along with elevated levels of calpain and caspase-3 activity was induced by G/GO. By using ATM siRNA, we demonstrated that reduction in ATM levels enhanced G/GO-induced apoptosis. Moreover, inhibition of calpain activity by calpeptin or calpastatin, or by inhibition of caspase-3 with z-DEVD, suppressed G/GO-induced apoptosis and ATM cleavage. Collectively, these findings suggest that proteolysis of ATM is the underlying mechanism of apoptosis of pancreatic acinar cells caused by exposure to oxidative stress.
Collapse
Affiliation(s)
- Soon Ok Cho
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, BK 21 Plus Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK 21 Plus Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Abstract
BCL-2 family members have additional roles beyond direct regulation of mitochondrial outer membrane permeabilization (MOMP) in apoptosis. One such important function is the release of calcium from the endoplasmic reticulum (ER), which critically contributes to the process of apoptosis. Here, we describe a protocol to measure calcium levels in the ER, mitochondria, and cytosol, with specific consideration of BCL-2 family biology.
Collapse
Affiliation(s)
- Marcos A Carpio
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,CIQUIBIC-Department of Biological Chemistry, National University of Cordoba, Cordoba, Argentina
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Totzeck M, Korste S, Miinalainen I, Hendgen-Cotta UB, Rassaf T. S -nitrosation of calpains is associated with cardioprotection in myocardial I/R injury. Nitric Oxide 2017; 67:68-74. [DOI: 10.1016/j.niox.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 04/05/2017] [Indexed: 01/23/2023]
|
5
|
Zhang H, Chang L, Zhang H, Nie J, Zhang Z, Yang X, Vuong AM, Wang Z, Chen A, Niu Q. Calpain-2/p35-p25/Cdk5 pathway is involved in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2017; 277:41-53. [PMID: 28559121 DOI: 10.1016/j.toxlet.2017.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been demonstrated to induce neurotoxicity in experimental rats and mice, with neuronal apoptosis as one of the major mechanisms, however, the mechanisms underlying PBDEs-induced neuronal apoptosis remain unclear. In this study, we aimed to investigate the role of calpain/p35-p25/Cdk5 pathway in BDE-153-induced neuronal apoptosis in the hippocampus and primary neurons in rats. Results showed that compared to the controls, neuronal apoptosis was significantly increased in vivo and ex vivo, as manifested by the increased hippocampus TUNEL-positive cell rates, apoptotic neurons in Hoechst and AO/EB staining, and the increased LDH activity and percentage of Annexin V-positive cells in rat hippocampus and primary neurons. Calpain activity was significantly increased in all the BDE-153-treated groups in vivo and ex vivo when compared to non-treatment controls. In addition, we showed that calpain-2 accounted for the calpain activation instead of calpain-1, as demonstrated by the up-regulated mRNA and protein expressions in calpain-2 but not calpain-1. Activated calpain truncated p35 into p25, which resulted in the p25/Cdk5 formation and activation. Calpain inhibitor PD150606 or p25/Cdk5 inhibitor Roscovitine relieved neuronal apoptosis mainly via inhibiting the p25/Cdk5 activation. Overall, the findings suggested that calpain-2/p35-p25/Cdk5 pathway was involved in BDE-153-induced neuronal apoptosis, which provides novel insight into the mechanisms of PBDE neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Lijun Chang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huajun Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jisheng Nie
- Department of Occupational Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhihong Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaorong Yang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Ann M Vuong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
6
|
Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 2017; 74:1281-1296. [PMID: 27837217 PMCID: PMC11107496 DOI: 10.1007/s00018-016-2403-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.
Collapse
Affiliation(s)
- Jeannette S Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, 900 E. 57th Street, 9th Floor, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Dubois C, Prevarskaya N, Vanden Abeele F. The calcium-signaling toolkit: Updates needed. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1337-43. [PMID: 26658643 DOI: 10.1016/j.bbamcr.2015.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/06/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022]
Abstract
Here, we review the role of Ca(2+) in apoptosis, namely that ER Ca(2+) depletion or a sustained elevation of cytosolic or mitochondrial Ca(2+) concentration are sufficient to trigger apoptosis. These concepts have emerged by the use of ER stressor agents that decrease the ER Ca(2+) pool by inhibiting SERCA pumps. However, aside from their well-known actions on Ca(2+) homeostasis disruption leading to apoptosis, new evidence show that some ER Ca(2+) modulators have significant implications in other Ca(2+)-mediated or Ca(2+)-independent pathways determining cell fate suggesting a more complex regulation of apoptosis by intracellular Ca(2+). Here, we discuss the crucial interplay between Ca(2+) mediated apoptosis, the Unfold Protein Response and autophagy determining cell fate, and the molecular compounds that have been used to depict these pathways. This review of the literature clearly shows the need for new inhibitors that do not interfere concomitantly with autophagy and Ca(2+) signaling. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Charlotte Dubois
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, 59650 France, Laboratory of Excellence, Ion Channels Science and Therapeutics, France
| | - Natalia Prevarskaya
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, 59650 France, Laboratory of Excellence, Ion Channels Science and Therapeutics, France
| | - Fabien Vanden Abeele
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, 59650 France, Laboratory of Excellence, Ion Channels Science and Therapeutics, France
| |
Collapse
|
8
|
Ye Y, Fu F, Li X, Yang J, Liu H. Selenoprotein S Is Highly Expressed in the Blood Vessels and Prevents Vascular Smooth Muscle Cells From Apoptosis. J Cell Biochem 2015; 117:106-17. [DOI: 10.1002/jcb.25254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Yali Ye
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Fen Fu
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Xiaoming Li
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Jie Yang
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Hongmei Liu
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Wuhan 430074 People's Republic of China
| |
Collapse
|
9
|
Witek MA, Fung LWM. Quantitative studies of caspase-3 catalyzed αII-spectrin breakdown. Brain Res 2013; 1533:1-15. [PMID: 23948103 PMCID: PMC3786445 DOI: 10.1016/j.brainres.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
Abstract
Under various physiological and patho-physiological conditions, spectrin breakdown reactions generate several spectrin breakdown products (SBDPs)-in particular SBDPs of 150 kDa (SBDP150) and 120 kDa (SBDP120). Recently, numerous studies have shown that reactions leading to SBDPs are physiologically relevant, well regulated, and complex. Yet molecular studies on the mechanism of the SBDP formation are comparatively scarce. We have designed basic systems to allow us to follow the breakdown of αII-spectrin model proteins by caspase-3 in detail with gel electrophoresis, fluorescence and mass spectrometry methods. Amongst the predicted and reported sites, our results show that caspase-3 cleaves after residues D1185 and D1478, but not after residues D888, D1340 and D1475. We also found that the cleavage at these two sites is independent of each other. It may be possible to inhibit one site without affecting the other site. Cleavage after residue D1185 in intact αII-spectrin leads to SBDP150, and cleavage after D1478 site leads to SBDP120. Our results also show that the cleavage after the D1185 residue is unusually efficient, with a kcat/KM value of 40,000 M(-1) s(-1), and the cleavage after the D1478 site is more similar to most of the other reported caspase-3 substrates, with a kcat/KM value of 3000 M(-1) s(-1). We believe that this study lays out a methodology and foundation to study caspase-3 catalyzed spectrin breakdown to provide quantitative information. Molecular understanding may lead to better understanding of brain injuries and more precise and specific biomarker development.
Collapse
Affiliation(s)
- Marta A. Witek
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| | - L. W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| |
Collapse
|