1
|
Zheng C, Hu X, Hua R, Ren X, Shi S, Hong X, Wang Y, Qiu L, Wu D, Cao T, Huang S, Zhao S, Pan Y. A Cerium Oxide Loaded Hyaluronic Acid Nanosystem Remits Glucose Oxidative Stress-Induced Odontoblasts Mitochondrial Apoptosis through Regulation of PGAM5 Pathway. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4426-4439. [PMID: 39772475 DOI: 10.1021/acsami.4c13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Diabetes mellitus (DM) induced mitochondrial oxidative stress (OS) can lead to severe injury of dental pulp. The cerium oxide nanoparticles (CNP) have been proven to have excellent antioxidative activity. However, whether CNP can relieve dental pulp damage caused by DM and the underlying mechanisms remain unclear. In this study, we modified ceria with hyaluronic acid to prepare nanoceria with good biocompatibility, water solubility, and stability, namely, HACNP (hyaluronic acid cerium oxide nanoparticles). We demonstrated the protective effect of HACNP on diabetic OS-induced mitochondrial apoptosis in dental pulp-like cells. As far as the mechanism of action was concerned, glucose oxidase (GO) treatment promoted the activation of phosphoglycerate mutase family 5 (PGAM5) leading to mitochondrial abnormalities and apoptosis in an odontoblast-like cell line (mDPC6T). Knockdown or overexpression of PGAM5 further validate these results. Meanwhile, HACNP remitted GO-related toxicity via down-regulating PGAM5 expression, whereas overexpression of PGAM5 abolished the beneficial effect of HACNP. Furthermore, in the constructed animal research model of diabetic pulp injury, we also confirmed that HACNP alleviated apoptosis and mitochondrial injury of dental pulp and decreased the expression level of PGAM5 in diabetic pulp tissue. In conclusion, these results revealed that HACNP played a protective role on diabetes-associated dental pulp injury through targeting the PGAM5-mediated mitochondrial pathway, providing an idea and method for the prevention or treatment of diabetes-induced dental pulp damage.
Collapse
Affiliation(s)
- Chuchu Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyu Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruize Hua
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xuekun Ren
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinhua Hong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yilin Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Lili Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Danni Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Tong Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou 325027, China
| | - Shengbin Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shufan Zhao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
2
|
Varlamova EG, Baryshev AS, Gudkov SV, Babenko VA, Plotnikov EY, Turovsky EA. Cerium Oxide Nanoparticles Protect Cortical Astrocytes from Oxygen-Glucose Deprivation through Activation of the Ca 2+ Signaling System. Int J Mol Sci 2023; 24:14305. [PMID: 37762608 PMCID: PMC10531718 DOI: 10.3390/ijms241814305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the works aimed at studying the cytoprotective properties of nanocerium are usually focused on the mechanisms of regulation of the redox status in cells while the complex effects of nanocerium on calcium homeostasis, the expression of pro-apoptotic and protective proteins are generally overlooked. There is a problem of a strong dependence of the effects of cerium oxide nanoparticles on their size, method of preparation and origin, which significantly limits their use in medicine. In this study, using the methods of molecular biology, immunocytochemistry, fluorescence microscopy and inhibitory analysis, the cytoprotective effect of cerium oxide nanoparticles obtained by laser ablation on cultured astrocytes of the cerebral cortex under oxygen-glucose deprivation (OGD) and reoxygenation (ischemia-like conditions) are shown. The concentration effects of cerium oxide nanoparticles on ROS production by astrocytes in an acute experiment and the effects of cell pre-incubation with nanocerium on ROS production under OGD conditions were studied. The dose dependence for nanocerium protection of cortical astrocytes from a global increase in calcium ions during oxygen-glucose deprivation and cell death were demonstrated. The concentration range of cerium oxide nanoparticles at which they have a pro-oxidant effect on cells has been identified. The effect of nanocerium concentrations on astrocyte preconditioning, accompanied by increased expression of protective proteins and limited ROS production induced by oxygen-glucose deprivation, has been investigated. In particular, a correlation was found between an increase in the concentration of cytosolic calcium under the action of nanocerium and the suppression of cell death. As a result, the positive and negative effects of nanocerium under oxygen-glucose deprivation and reoxygenation in astrocytes were revealed at the molecular level. Nanocerium was found to act as a "double-edged sword" and to have a strictly defined concentration therapeutic "window".
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
3
|
Liu H, Ji M, Bi Y, Xiao P, Zhao J, Gou J, Yin T, He H, Ding H, Tang X, Zhang Y. Integration of MyD88 inhibitor into mesoporous cerium oxide nanozymes-based targeted delivery platform for enhancing treatment of ulcerative colitis. J Control Release 2023; 361:493-509. [PMID: 37572964 DOI: 10.1016/j.jconrel.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Excessive reactive oxygen species (ROS) and stressed inflammatory response are major characteristics of ulcerative colitis, which cause disease progression and aggravation. Herein, a novel mesoporous cerium oxide nanozymes (MCN) was designed and then loaded with Myeloid differentiation factor-88 (MyD88) inhibitor for synergistic treatment of colitis by scavenging ROS and regulating inflammation. This innovative MCN with average particle size of 200.7 nm, specific surface area of 119.78 m2/g and mesopores of 4.47 nm not only exhibited excellent SOD-like and CAT-like activities to scavenge ROS but also could act as a carrier to load MyD88 inhibitor, TJ-M2010-5, (abbreviated as TJ-5) into their mesopores, achieving the effect of 'two birds with one stone'. Besides, the modification of dextran sulfate sodium (TJ-5/MCN/DSS) increased the internalization of nanozymes into activated macrophages and enhanced in vitro anti-inflammatory ability. To enhance colon targeting, we coated TJ-5/MCN/DSS with the enteric material Eudragit S100, preventing premature release or absorption of the drug in the gastrointestinal tract after oral administration. The results demonstrated that TJ-5/MCN/DSS/Eudragit not only achieved delayed drug release and improved colon targeting but also exhibited optimal therapeutic efficacy in colitis mice. Mechanistically, the MCN-mediated ROS scavenging and TJ-5-mediated MyD88 blockade synergistically inhibited the NF-κB signaling pathway, thereby reducing the inflammatory response. Importantly, TJ-5/MCN/DSS/Eudragit did not induce systemic toxicity. In conclusion, our work not only presents a novel carrier capable of scavenging ROS but also provides proof of concept for the synergistic treatment of colitis using this carrier in combination with MyD88 inhibitors. This study proposes a safe and efficient strategy for targeting ROS-associated inflammation.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuti Bi
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiansong Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Ahmed HH, Aglan HA, Beherei HH, Mabrouk M, Mahmoud NS. The promising role of hypoxia-resistant insulin-producing cells in ameliorating diabetes mellitus in vivo. Future Sci OA 2022; 8:FSO811. [PMID: 36248064 PMCID: PMC9540411 DOI: 10.2144/fsoa-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
AIM This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against diabetes in vivo. MATERIALS & METHODS Mesenchymal stem cells (MSCs) differentiation into IPCs in the presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential. RESULTS MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue architecture. CONCLUSION The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs that could be an inspirational strategy for curing diabetes.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
5
|
Atherton E, Hu Y, Brown S, Papiez E, Ling V, Colvin V, Borton D. A 3D in vitro model of the device-tissue interface: Functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. J Neural Eng 2022; 19. [PMID: 35447619 DOI: 10.1088/1741-2552/ac6908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The recording instability of neural implants due to neuroinflammation at the device-tissue interface is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local "innate" immune responses are not well-understood. We aimed to understand and mitigate the isolated the innate neuroinflammatory response to devices. APPROACH Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensional in vitro model of the DTI by seeding primary cortical cells around microwires. Live imaging of both dye and AAV-mediated functional, structural, and lipid peroxidation fluorescence was employed to characterize the neuroinflammatory response. MAIN RESULTS Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through the in vivo blood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of "perpetual" antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity. SIGNIFICANCE Our 3D in vitro model of the device-tissue interface exhibited symptoms of OS-mediated innate neuroinflammation, indicating a significant local immune response to devices. The dysregulation of functional connectivity of microcircuits surround implants suggests the presence of an observer effect, in which the process of recording neural activity may fundamentally change the neural signal. Finally, the demonstration of antioxidant ceria nanoparticle treatment exhibited substantial promise as a neuroprotective and anti-inflammatory treatment strategy.
Collapse
Affiliation(s)
- Elaina Atherton
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Yue Hu
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Sophie Brown
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Emily Papiez
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Vivian Ling
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Vicki Colvin
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - David Borton
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| |
Collapse
|
6
|
Kajjumba GW, Attene-Ramos M, Marti EJ. Toxicity of lanthanide coagulants assessed using four in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149556. [PMID: 34399349 DOI: 10.1016/j.scitotenv.2021.149556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Rare earth element (REE) coagulants are prime contenders in wastewater treatment plants to remove phosphorus; unlike typical coagulants, they are not affected by pH. However, the use of REEs in wastewater treatment could mean increased human exposure to lanthanides (Ln) through wastewater effluent discharge to the environment or through water reuse. Information on the toxicity of lanthanides is scarce and, where available, there are conflicting views. Using in vitro bioassays, we assessed lanthanide toxicity by evaluating four relevant endpoints: the change in mitochondrial membrane potential (Δψm), intracellular adenosine triphosphate (I-ATP), genotoxicity, and cell viability. At less than 5000 μmol-Ln3+/L, lanthanides increased the Δψm, while above 5000 μmol-Ln3+/L, the Δψm level plummeted. The measure of I-ATP indicated constant levels of ATP up to 250 μmol-Ln3+/L, above which the I-ATP decreased steadily; the concentration of La, Ce, Gd, and Lu that triggered half of the cells to become ATP-inactive is 794, 1505, 1488, 1115 μmol-Ln3+/L, respectively. Although La and Lu accelerated cell death in shorter studies (24 h), chronic studies using three cell growth cycles showed cell recovery. Lanthanides exhibited antagonistic toxicity at less than 1000 μmol-Ln3+/L. However, the introduction of heavy REEs in a solution amplified lanthanide toxicity. Tested lanthanides appear to pose little risk, which could pave the way for lanthanide application in wastewater treatment.
Collapse
Affiliation(s)
- George William Kajjumba
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, USA.
| | - Matias Attene-Ramos
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, DC, USA
| | - Erica J Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, USA.
| |
Collapse
|
7
|
Li YR, Zhu H. Nanoceria potently reduce superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages. Mol Cell Biochem 2021; 476:4461-4470. [PMID: 34478033 PMCID: PMC9333338 DOI: 10.1007/s11010-021-04246-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Cerium oxide nanoparticles, also known as nanoceria, possess antioxidative and anti-inflammatory activities in animal models of inflammatory disorders, such as sepsis. However, it remains unclear how nanoceria affect cellular superoxide fluxes in macrophages, a critical type of cells involved in inflammatory disorders. Using human ML-1 cell-derived macrophages, we showed that nanoceria at 1-100 μg/ml potently reduced superoxide flux from the mitochondrial electron transport chain (METC) in a concentration-dependent manner. The inhibitory effects of nanoceria were also shown in succinate-driven mitochondria isolated from the macrophages. Furthermore, nanoceria markedly mitigated the total intracellular superoxide flux in the macrophages. These data suggest that nanoceria could readily cross the plasma membrane and enter the mitochondrial compartment, reducing intracellular superoxide fluxes in unstimulated macrophages. In macrophages undergoing respiratory burst, nanoceria also strongly reduced superoxide flux from the activated macrophage plasma membrane NADPH oxidase (NOX) in a concentration-dependent manner. Token together, the results of the present study demonstrate that nanoceria can effectively diminish superoxide fluxes from both METC and NOX in human macrophages, which may have important implications for nanoceria-mediated protection against inflammatory disease processes.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA.
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| |
Collapse
|
8
|
Ahmed HH, Aglan HA, Mahmoud NS, Aly RM. Preconditioned human dental pulp stem cells with cerium and yttrium oxide nanoparticles effectively ameliorate diabetic hyperglycemia while combatting hypoxia. Tissue Cell 2021; 73:101661. [PMID: 34656024 DOI: 10.1016/j.tice.2021.101661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED The development of efficient insulin producing cells (IPC) induction system is fundamental for the regenerative clinical applications targeting Diabetes Mellitus. This study was set to generate IPC from human dental pulp stem cells (hDPSCs) capable of surviving under hypoxic conditions in vitro and in vivo. METHODS hDPSCs were cultured in IPCs induction media augmented with Cerium or Yttrium oxide nanoparticles along with selected growth factors & cytokines. The generated IPC were subjected to hypoxic stress in vitro to evaluate the ability of the nanoparticles to combat hypoxia. Next, they were labelled and implanted into diabetic rats. Twenty eight days later, blood glucose and serum insulin levels, hepatic hexokinase and glucose-6-phosphate dehydrogenase activities were measured. Pancreatic vascular endothelial growth factor (VEGF), pancreatic duodenal homeobox1 (Pdx-1), hypoxia inducible factor 1 alpha (HIF-1α) and Caspase-3 genes expression level were evaluated. RESULTS hDPSCs were successfully differentiated into IPCs after incubation with the inductive media enriched with nanoparticles. The generated IPCs released significant amounts of insulin in response to increasing glucose concentration both in vitro & in vivo. The generated IPCs showed up-regulation in the expression levels of anti-apoptotic genes in concomitant with down-regulation in the expression levels of hypoxic, and apoptotic genes. The in vivo study confirmed the homing of PKH-26-labeled cells in pancreas of treated groups. A significant up-regulation in the expression of pancreatic VEGF and PDX-1 genes associated with significant down-regulation in the expression of pancreatic HIF-1α and caspase-3 was evident. CONCLUSION The achieved results highlight the promising role of the Cerium & Yttrium oxide nanoparticles in promoting the generation of IPCs that have the ability to combat hypoxia and govern diabetes mellitus.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Nadia S Mahmoud
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Riham M Aly
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt; Basic Dental Science Department, National Research Centre, Giza, Egypt.
| |
Collapse
|
9
|
Javad Farhangi M, Es-haghi A, Taghavizadeh Yazdi ME, Rahdar A, Baino F. MOF-Mediated Synthesis of CuO/CeO 2 Composite Nanoparticles: Characterization and Estimation of the Cellular Toxicity against Breast Cancer Cell Line (MCF-7). J Funct Biomater 2021; 12:jfb12040053. [PMID: 34698230 PMCID: PMC8544372 DOI: 10.3390/jfb12040053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
A copper oxide/cerium oxide nanocomposite (CuO/CeO2, NC) was synthesized via a novel method using a metal–organic framework as a precursor. This nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering size analysis (DLS), and zeta potential. The PXRD showed the successful synthesis of the CuO/CeO2 NC, in which the 2theta values of 35.55° (d = 2.52 Å, 100%) and 38.73° (d = 2.32 Å, 96%) revealed the existence of copper (II) oxide. FTIR analysis showed the CeO2, hydroxyl groups, absorbed water, and some residual peaks. The solid phase analysis by FESEM and TEM images showed mean particle sizes of 49.18 ± 24.50 nm and 30.58 ± 26.40 nm, respectively, which were comparable with crystallite size (38.4 nm) obtained from PXRD, but it appears the CuO/CeO2 NC was not evenly distributed and in some areas, showed it was highly agglomerated. The hydrodynamic size (750.5 nm) also showed the agglomeration of the CuO/CeO2 NCs in the solution, which had a negatively charged surface. The CuO/CeO2 NCs showed anti-proliferative activity against human breast cancer cell line (MCF-7) in a dose- and time-dependence way, while affecting normal cells less significantly.
Collapse
Affiliation(s)
- Mohammad Javad Farhangi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran; (M.J.F.); (A.E.-h.)
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran; (M.J.F.); (A.E.-h.)
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Correspondence: (M.E.T.Y.); (A.R.); (F.B.)
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (M.E.T.Y.); (A.R.); (F.B.)
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: (M.E.T.Y.); (A.R.); (F.B.)
| |
Collapse
|
10
|
Asgharzadeh F, Hashemzadeh A, Rahmani F, Yaghoubi A, Nazari SE, Avan A, Mehr SMH, Soleimanpour S, Khazaei M. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sci 2021; 278:119500. [PMID: 33862111 DOI: 10.1016/j.lfs.2021.119500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cerium (IV) oxide (CeO2) exhibit anti-inflammatory activity via scavenge free radicals and decreasing the oxygen species (ROS) production. Here we aimed to exhibit the therapeutic effect of this nanoparticle in experimental colitis models. METHODS Cerium oxide nanoparticles (CeONPs) were synthesized via using UiO-66 as a precursor. We used dextran sodium sulfate (DSS) to induce colitis in experimental models to investigate the anti-inflammatory effect of CeONPs. Colitis models are divided into four groups to receive the treatment, including control, colitis, cerium oxide, and sulfasalazine. We evaluated the therapeutic effects of CeONPs for the increased colitis clinical symptoms and attenuated the histological damage to colon tissue in colitis. RESULT This nanoparticle was significantly able to reduce the clinical symptoms of colitis. Moreover, CeONPs can enhance the disease activity index such as body lose weight, diarrhea, rectal bleeding, colon length, and spleen weight. Moreover, CeONPs showed a significant reduction in the histological characteristics of the colitis models. CONCLUSION These results suggest that CeONPs can be considered as promising therapeutic agents in treating the ulcerative colitis.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Biochemistry, Faculty of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian Mehr
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Goujon G, Baldim V, Roques C, Bia N, Seguin J, Palmier B, Graillot A, Loubat C, Mignet N, Margaill I, Berret J, Beray‐Berthat V. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Adv Healthc Mater 2021; 10:e2100059. [PMID: 33890419 DOI: 10.1002/adhm.202100059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Oxidative stress, which is one of the main harmful mechanisms of pathologies including ischemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants are tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, the objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity. This study reports the synthesis and characterization of functional polymers and their impact on the enzyme-like catalytic activity of CNPs. To study the toxicity and the antioxidant properties of CNPs for stroke and particularly endothelial damages, in vitro studies are conducted on a cerebral endothelial cell line (bEnd.3). Despite their internalization in bEnd.3 cells, coated CNPs are devoid of cytotoxicity. Microscopy studies report an intracellular localization of CNPs, more precisely in endosomes. All CNPs reduces glutamate-induced intracellular production of reactive oxygen species (ROS) in endothelial cells but one CNP significantly reduces both the production of mitochondrial superoxide anion and DNA oxidation. In vivo studies report a lack of toxicity in mice. This study therefore describes and identifies biocompatible CNPs with interesting antioxidant properties for ischemic stroke and related pathologies.
Collapse
Affiliation(s)
- Geoffroy Goujon
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Victor Baldim
- Université de Paris CNRS UMR 7057 Matière et systèmes complexes Paris 75013 France
| | - Caroline Roques
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Nicolas Bia
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Johanne Seguin
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Bruno Palmier
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Alain Graillot
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Cédric Loubat
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Nathalie Mignet
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Isabelle Margaill
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Jean‐François Berret
- Université de Paris CNRS UMR 7057 Matière et systèmes complexes Paris 75013 France
| | - Virginie Beray‐Berthat
- Université de Paris CNRS ERL 3649 “Pharmacologie et thérapies des addictions” Inserm UMR‐S 1124 T3S “Environmental Toxicity, Therapeutic Targets Cellular Signaling an biomarkers” 45 rue des Saints Pères Paris F‐75006 France
| |
Collapse
|
12
|
Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020; 25:E4559. [PMID: 33036163 PMCID: PMC7583868 DOI: 10.3390/molecules25194559] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several biocompatible materials have been applied for managing soft tissue lesions; cerium oxide nanoparticles (CNPs, or nanoceria) are among the most promising candidates due to their outstanding properties, including antioxidant, anti-inflammatory, antibacterial, and angiogenic activities. Much attention should be paid to the physical properties of nanoceria, since most of its biological characteristics are directly determined by some of these relevant parameters, including the particle size and shape. Nanoceria, either in bare or functionalized forms, showed the excellent capability of accelerating the healing process of both acute and chronic wounds. The skin, heart, nervous system, and ophthalmic tissues are the main targets of nanoceria-based therapies, and the other soft tissues may also be evaluated in upcoming experimental studies. For the repair and regeneration of soft tissue damage and defects, nanoceria-incorporated film, hydrogel, and nanofibrous scaffolds have been proven to be highly suitable replacements with satisfactory outcomes. Still, some concerns have remained regarding the long-term effects of nanoceria administration for human tissues and organs, such as its clearance from the vital organs. Moreover, looking at the future, it seems necessary to design and develop three-dimensional (3D) printed scaffolds containing nanoceria for possible use in the concepts of personalized medicine.
Collapse
Affiliation(s)
- Hossein Sadidi
- General Surgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ali Ahmadabadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Seyed Javad Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine,, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Morvarid Vatanpour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| |
Collapse
|
13
|
Zavvari F, Nahavandi A, Shahbazi A. Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. J Chem Neuroanat 2020; 106:101799. [DOI: 10.1016/j.jchemneu.2020.101799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
|
14
|
Nyoka M, Choonara YE, Kumar P, Kondiah PPD, Pillay V. Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E242. [PMID: 32013189 PMCID: PMC7075153 DOI: 10.3390/nano10020242] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles have been used in a number of non-medical products over the years. The therapeutic application of these nanoparticles has mainly been due to their oxidative stress ameliorating abilities. Their enzyme-mimetic catalytic ability to change between the Ce3+ and Ce4+ species makes them ideal for a role as free-radical scavengers for systemic diseases as well as neurodegenerative diseases. In this review, we look at various methods of synthesis (including the use of stabilizing/capping agents and precursors), and how the synthesis method affects the physicochemical properties, their behavior in biological environments, their catalytic abilities as well as their reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (M.N.); (Y.E.C.); (P.K.); (P.P.D.K.)
| |
Collapse
|
15
|
Abuid NJ, Gattás-Asfura KM, Schofield EA, Stabler CL. Layer-by-Layer Cerium Oxide Nanoparticle Coating for Antioxidant Protection of Encapsulated Beta Cells. Adv Healthc Mater 2019; 8:e1801493. [PMID: 30633854 PMCID: PMC6625950 DOI: 10.1002/adhm.201801493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Indexed: 01/15/2023]
Abstract
In type 1 diabetes, the replacement of the destroyed beta cells could restore physiological glucose regulation and eliminate the need for exogenous insulin. Immunoisolation of these foreign cellular transplants via biomaterial encapsulation is widely used to prevent graft rejection. While highly effective in blocking direct cell-to-cell contact, nonspecific inflammatory reactions to the implant lead to the overproduction of reactive oxygen species, which contribute to foreign body reaction and encapsulated cell loss. For antioxidant protection, cerium oxide nanoparticles (CONPs) are a self-renewable, ubiquitous, free radical scavenger currently explored in several biomedical applications. Herein, 2-12 alternating layers of CONP/alginate are assembled onto alginate microbeads containing beta cells using a layer-by-layer (LbL) technique. The resulting nanocomposite coatings demonstrate robust antioxidant activity. The degree of cytoprotection correlates with layer number, indicating tunable antioxidant protection. Coating of alginate beads with 12 layers of CONP/alginate provides complete protection to the entrapped beta cells from exposure to 100 × 10-6 m H2 O2 , with no significant changes in cellular metabolic activity, oxidant capacity, or insulin secretion dynamics, when compared to untreated controls. The flexibility of this LbL method, as well as its nanoscale profile, provides a versatile approach for imparting antioxidant protection to numerous biomedical implants, including beta cell transplantation.
Collapse
Affiliation(s)
- Nicholas J Abuid
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Kerim M Gattás-Asfura
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Emily A Schofield
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, UF Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
16
|
Paul S, Gangwar A, Bhargava K, Khurana P, Ahmad Y. Diagnosis and prophylaxis for high-altitude acclimatization: Adherence to molecular rationale to evade high-altitude illnesses. Life Sci 2018; 203:171-176. [PMID: 29698652 DOI: 10.1016/j.lfs.2018.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/13/2018] [Accepted: 04/21/2018] [Indexed: 11/25/2022]
Abstract
Lack of zero side-effect, prescription-less prophylactics and diagnostic markers of acclimatization status lead to many suffering from high altitude illnesses. Although not fully translated to the clinical setting, many strategies and interventions are being developed that are aimed at providing an objective and tangible answer regarding the acclimatization status of an individual as well as zero side-effect prophylaxis that is cost-effective and does not require medical supervision. This short review brings together the twin problems associated with high-altitude acclimatization, i.e. acclimatization status and zero side-effect, easy-to-use prophylaxis, for the reader to comprehend as cogs of the same phenomenon. We describe current research aimed at preventing all the high-altitude illnesses by considering them an assault on redox and energy homeostasis at the molecular level. This review also entails some proteins capable of diagnosing either acclimatization or high-altitude illnesses. The future strategies based on bioinformatics and systems biology is also discussed.
Collapse
Affiliation(s)
- Subhojit Paul
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Anamika Gangwar
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Kalpana Bhargava
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Pankaj Khurana
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
17
|
Gangwar A, Paul S, Ahmad Y, Bhargava K. Competing trends of ROS and RNS-mediated protein modifications during hypoxia as an alternate mechanism of NO benefits. Biochimie 2018; 148:127-138. [PMID: 29571702 DOI: 10.1016/j.biochi.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Hypoxia, especially altitude associated hypoxia is known to cause severe physiological alterations and life-threatening conditions. Impaired redox balance along with oxidative stress, protein carbonylation and instigation of apoptotic events are common sub-cellular events that follow the hypoxic insult. The role of nitric oxide (NO) is very dynamic and versatile in preventing the ill effects of hypoxia vis-a-vis reacting with oxidative species and causing protein nitrosylation. Although several mechanisms of NO-mediated cytoprotection are known during hypoxic insult, limited pieces of evidence are available to support the relationship between two downstream events of oxidative stress, protein carbonylation (caused by carbonyl; CO radical) and protein nitrosylation/nitration (caused by NO/peroxynitrite; ONOO radical). In this study, we investigated an entirely new aspect of NO protection in hypoxia involving crosstalk between carbonylation and nitrosylation. Using standard NO inhibitor l-NAME and simulated hypoxic conditions in hypoxia-sensitive cell line H9c2, we evaluated the levels of radicals, cell death, mitochondrial membrane potential, levels of protein nitrosylation, protein nitration and carbonylation and glutathione content. The results were then carefully analyzed in light of NO bioavailability. Our study shows that reducing NO during hypoxia caused cell death via the increased degree of carbonylation in proteins. This provides a new aspect of NO benefits which furthers opens new possibilities to explore potential mechanisms and effects of cross-talk between nitrosylation, protein nitration and carbonylation, especially through some common antioxidant mediators such as glutathione and thioredoxin.
Collapse
Affiliation(s)
- Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
18
|
Dubey A, Jangir H, Pandey M, Dubey MM, Verma S, Roy M, Singh SK, Philip D, Sarkar S, Das M. An eco-friendly, low-power charge storage device from bio-tolerable nano cerium oxide electrodes for bioelectrical and biomedical applications. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Gliga AR, Edoff K, Caputo F, Källman T, Blom H, Karlsson HL, Ghibelli L, Traversa E, Ceccatelli S, Fadeel B. Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep 2017; 7:9284. [PMID: 28839176 PMCID: PMC5570910 DOI: 10.1038/s41598-017-09430-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/26/2017] [Indexed: 12/02/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) display antioxidant properties and have shown cytoprotective effects both in vitro and in vivo. Here, we explored the effects of nanoceria on neural progenitor cells using the C17.2 murine cell line as a model. First, we assessed the effects of nanoceria versus samarium (Sm) doped nanoceria on cell viability in the presence of the prooxidant, DMNQ. Both particles were taken up by cells and nanoceria, but not Sm-doped nanoceria, elicited a temporary cytoprotective effect upon exposure to DMNQ. Next, we employed RNA sequencing to explore the transcriptional responses induced by nanoceria or Sm-doped nanoceria during neuronal differentiation. Detailed computational analyses showed that nanoceria altered pathways and networks relevant for neuronal development, leading us to hypothesize that nanoceria inhibits neuronal differentiation, and that nanoceria and Sm-doped nanoceria both interfere with cytoskeletal organization. We confirmed that nanoceria reduced neuron specific β3-tubulin expression, a marker of neuronal differentiation, and GFAP, a neuroglial marker. Furthermore, using super-resolution microscopy approaches, we could show that both particles interfered with cytoskeletal organization and altered the structure of neural growth cones. Taken together, these results reveal that nanoceria may impact on neuronal differentiation, suggesting that nanoceria could pose a developmental neurotoxicity hazard.
Collapse
Affiliation(s)
- Anda R Gliga
- Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Edoff
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fanny Caputo
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Rome, Italy
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Blom
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Hanna L Karlsson
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lina Ghibelli
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Enrico Traversa
- Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Rome, Italy
- International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an, China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, Traversa E. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep 2017; 7:4636. [PMID: 28680107 PMCID: PMC5498533 DOI: 10.1038/s41598-017-04098-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) are novel synthetic antioxidant agents proposed for treating oxidative stress-related diseases. The synthesis of high-quality CNPs for biomedical applications remains a challenging task. A major concern for a safe use of CNPs as pharmacological agents is their tendency to agglomerate. Herein we present a simple direct precipitation approach, exploiting ethylene glycol as synthesis co-factor, to synthesize at room temperature nanocrystalline sub-10 nm CNPs, followed by a surface silanization approach to improve nanoparticle dispersibility in biological fluids. CNPs were characterized using transmission electron microscopy (TEM) observations, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. CNP redox activity was studied in abiotic systems using electron spin resonance (ESR) measurements, and in vitro on human cell models. In-situ silanization improved CNP colloidal stability, in comparison with non-functionalized particles, and allowed at the same time improving their original biological activity, yielding thus functionalized CNPs suitable for biomedical applications.
Collapse
Affiliation(s)
- Fanny Caputo
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133, Roma, Italy
- Dipartimento di Biologia, Università di Roma Tor Vergata, 00133, Roma, Italy
| | - Marta Mameli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Institute of Physics, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Silvia Licoccia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133, Roma, Italy
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, 00133, Roma, Italy
| | - Enrico Traversa
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133, Roma, Italy.
- International Research Center for Renewable Energy, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Serebrovska Z, Swanson RJ, Portnichenko V, Shysh A, Pavlovich S, Tumanovska L, Dorovskych A, Lysenko V, Tertykh V, Bolbukh Y, Dosenko V. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother 2017; 92:69-77. [PMID: 28531802 DOI: 10.1016/j.biopha.2017.05.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
A massage with the potent counter-inflammatory material, cerium dioxide nanoparticles, is promising and the antioxidant properties of CeO2 are considered the main, if not the only, mechanism of this action. Nevertheless, the elimination of ceria nano-particles from the organism is very slow and there is a strong concern for toxic effect of ceria due to its accumulation. To overcome this problem, we engineered a combined material in which cerium nanoparticles were immobilized on the surface of silica nanoparticles (CeO2 NP), which is shown to be easily removed from an organism and could be used as carriers for nano-ceria. In our study particle size was 220±5nm, Zeta-potential -4.5mV (in water), surface charge density -17.22μC/cm2 (at pH 7). Thirty-six male Wistar rats, 5 months old and 250-290g were divided into four groups: 1) control; 2) CeO2 NP treatment; 3) experimental pneumonia (i/p LPS injection, 1mg/kg); and 4) experimental pneumonia treated with CeO2 NP (4 times during the study in dosage of 0.6mg/kg with an orogastric catheter). Gas exchange and pulmonary ventilation were measured four times: 0, 1, 3 and 24h after LPS injection in both untreated and CeO2 NP-treated animals. The mRNA of TNF-α, Il-6, and CxCL2 were determined by RT-PCR. ROS-generation in blood plasma and lung tissue homogenates were measured by means of lucigenin- and luminol-enhanced chemiluminescence. Endotoxemia in the acute phase was associated with: (1) pathological changes in lung morphology; (2) increase of ROS generation; (3) enhanced expression of CxCL2; and (4) a gradual decrease of VO2 and VE. CeO2 NP treatment of intact animals did not make any changes in all studied parameters except for a significant augmentation of VO2 and VE. CeO2 NP treatment of rats with pneumonia created positive changes in diminishing lung tissue injury, decreasing ROS generation in blood and lung tissue and decreasing pro-inflammatory cytokine expression (TNF-α, Il-6 and CxCL2). Oxygen consumption in this group was increased compared to the LPS pneumonia group. In our study we have shown anti-inflammatory and antioxidant effects of CeO2 NP. In addition, this paper is the first to report that CeO2 NP stimulates oxygen consumption in both healthy rats, and rats with pneumonia. We propose the key in understanding the mechanisms behind the phenomena lies in the property of CeO2 NP to scavenge ROS and the influence of this potent antioxidant on mitochondrial function. The study of biodistribution and elimination of СеО2NP is the purpose of our ongoing study.
Collapse
Affiliation(s)
- Z Serebrovska
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| | - R J Swanson
- Liberty University College of Osteopathic Medicine in Lynchburg, 306 Liberty View Lane, Lynchburg, VA24502, USA
| | - V Portnichenko
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - A Shysh
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - S Pavlovich
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - L Tumanovska
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - A Dorovskych
- Integrative Medicine Clinic "SmartMed", 16 Luteranska St., Kyiv, 01024, Ukraine
| | - V Lysenko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028, Kyiv, Ukraine
| | - V Tertykh
- Chuiko Institute of Surface Chemistry, National Academy of Sciences, 17 Generala Naumova St., 03164, Kyiv, Ukraine
| | - Y Bolbukh
- Chuiko Institute of Surface Chemistry, National Academy of Sciences, 17 Generala Naumova St., 03164, Kyiv, Ukraine
| | - V Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| |
Collapse
|
22
|
Nanocerium oxide increases the survival of adult rod and cone photoreceptor in culture by abrogating hydrogen peroxide-induced oxidative stress. Biointerphases 2016; 11:031016. [PMID: 27782496 DOI: 10.1116/1.4962263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In vitro cell culture system for adult rod and cone photoreceptor (PR) is an effective and economical model for screening drug candidates against all kinds of age related retinal blindness. Interestingly, adult PR cells have a limited survival in the culture system, thus preventing full exploitation of this in vitro approach for drug screening applications. The limited survival of the adult PR cells in culture is due to their inherently high oxidative stress and photic injury. Mixed valence-state ceria nanoparticles have the ability to scavenge free radicals and reduce oxidative stress. Here, ceria nanoparticles of 5-10 nm dimensions have been synthesized, possessing dual oxidation state (+3 and +4) as evident from x-ray photoelectron spectroscopy and exhibiting real time reduction of hydrogen peroxide (H2O2) as quantified by absorbance spectroscopy and cyclic voltammogram analysis. Using flow cytometry and cell culture assay, it has been shown that, upon one time addition of 10 nM of nanoceria in the PR culture of the 18 months old adult common carp (Cyprinus carpio) at the time of plating the cells, the oxidative stress caused due to hydrogen peroxide assault could be abrogated. A further single application of nanoceria significantly increases the survival of these fragile cells in the culture, thus paving way for developing a more robust photoreceptor culture model to study the aging photoreceptor cells in a defined condition.
Collapse
|
23
|
Wahba SM, Darwish AS, Kamal SM. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:151-63. [DOI: 10.1016/j.msec.2016.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/27/2016] [Accepted: 04/11/2016] [Indexed: 01/16/2023]
|
24
|
Paul S, Arya A, Gangwar A, Bhargava K, Ahmad Y. Size restricted silymarin suspension evokes integrated adaptive response against acute hypoxia exposure in rat lung. Free Radic Biol Med 2016; 96:139-51. [PMID: 27105952 DOI: 10.1016/j.freeradbiomed.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Despite its extraordinary antioxidant capacity, the clinical usage of silymarin has remained restricted to amelioration of hepatic pathology. Perhaps its low bioavailability and uneven bio-distribution, owing to its poor aqueous solubility, are two main causes that have dampened the clinical applicability and scope of this preparation. We took these two challenges and suggested an unexplored application of silymarin. Apart from liver, two of the most susceptible vital organs at the highest risk of oxidative stress are brain and lung, especially during reduced oxygen saturation (hypoxia) at anatomical level. Hypoxia causes excess generation of radicals primarily in the lungs as it is the first organ at the interphase of atmosphere and organism making it the most prone and vulnerable to oxidative stress and the first responder against hypobaric hypoxia. As our first objective, we improved the silymarin formulation by restricting its size to the lower threshold and then successfully tested the prophylactic and therapeutic action in rat lung challenged with simulated hypobaric hypoxia. After dose optimization, we observed that 50mg/kg BW silymarin as size restricted and homogenous aqueous suspension successfully minimized the reactive oxygen species and augmented the antioxidant defense by significant upregulation of catalase and superoxide dismutase and reduced glutathione. Moreover, the well-established hypoxia markers and proteins related to hypoxia adaptability, hif1a and VEGF were differentially regulated conferring significant reduction in the inflammation caused by hypobaric hypoxia. We therefore report,the unexplored potential benefits of silymarin for preventing high altitude associated pathophysiology further paving its road to clinical trials.
Collapse
Affiliation(s)
- Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Ministry of Defence, Lucknow Road, Timarpur, Delhi 110054, India
| | - Aditya Arya
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Ministry of Defence, Lucknow Road, Timarpur, Delhi 110054, India
| | - Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Ministry of Defence, Lucknow Road, Timarpur, Delhi 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Ministry of Defence, Lucknow Road, Timarpur, Delhi 110054, India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Ministry of Defence, Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
25
|
Han L, Wang C, Guo S, Liu S, Yang L. Therapeutic effect of recombinant lentiviral vector containing succinate dehydrogenase iron-sulfur protein on the treatment of experimental autoimmunity myocarditis. Med Hypotheses 2016; 93:97-101. [PMID: 27372865 DOI: 10.1016/j.mehy.2016.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/23/2016] [Indexed: 12/28/2022]
Abstract
Cardiac autoimmune reaction takes part in myocarditis, dilated cardiomyopathy and heart failure. Existing literature has confirmed that the occurrence of cardiomyopathy belongs to mitochondrial diseases and is related to the oxidative respiratory chain subunit. The special structure of iron-sulfur protein (ISP) is responsible for the oxidative stress in oxidative phosphorylation, which is also a target that is easily attacked by various damage factors. Using gene therapy technology to restore succinate dehydrogenase iron-sulfur protein (SDISP) function- and thus resume myocardial mitochondria function and myocardial function is hypothesized to alleviate the experimental autoimmunity myocarditis (EAM).
Collapse
Affiliation(s)
- Lina Han
- Department of Cardiovascular Internal Medicine, Nanlou Branch of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chunxi Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Shuli Guo
- School of Automation, Beijing Institute of Technology, Beijing 100081, China.
| | - Siyu Liu
- Medical Imaging, Harbin Medical University, Harbin 150000, China
| | - Liming Yang
- Department of Cardiac Surgery, First Bethune Hospital of Jilin University, Xinmin Street, Changchun, Jilin Province 130021, China
| |
Collapse
|
26
|
Arya A, Gangwar A, Singh SK, Roy M, Das M, Sethy NK, Bhargava K. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine 2016; 11:1159-73. [PMID: 27069362 PMCID: PMC4818056 DOI: 10.2147/ijn.s102096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Arya
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Anamika Gangwar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Sushil Kumar Singh
- Functional Materials Division, Solid State Physics Laboratory, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Manas Roy
- Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, India; Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Mainak Das
- Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| |
Collapse
|
27
|
Shcherbakov AB, Zholobak NM, Spivak NY, Ivanov VK. Advances and prospects of using nanocrystalline ceria in prolongation of lifespan and healthy aging. RUSS J INORG CHEM+ 2015. [DOI: 10.1134/s0036023615130057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|
29
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
30
|
Caputo F, De Nicola M, Ghibelli L. Pharmacological potential of bioactive engineered nanomaterials. Biochem Pharmacol 2014; 92:112-30. [DOI: 10.1016/j.bcp.2014.08.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 01/17/2023]
|