1
|
Somacal S, Schüler da Silva LC, de Oliveira J, Emanuelli T, Fabro de Bem A. Bixin, a New Atheroprotective Carotenoid Candidate, Prevents oxLDL-Induced Cytotoxicity and Mitochondrial Dysfunction in Macrophages: Involvement of the Nrf2 and NF-κB Pathways. Foods 2024; 13:2002. [PMID: 38998509 PMCID: PMC11241531 DOI: 10.3390/foods13132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) and its toxicity in the arterial wall have been implicated in atherosclerosis. This study aimed to investigate the mechanisms underlying the atheroprotective effect of bixin, a carotenoid obtained from the seeds of the tropical plant Bixa orellana, on Cu2+-induced LDL oxidation and oxLDL-mediated effects in J774A.1 macrophage cells. Bixin's effects were compared to those of lycopene, a carotenoid widely studied for its cardiovascular protective effects. LDL was isolated from human plasma, incubated with bixin or lycopene (positive control), and subjected to oxidation with CuSO4. Afterward, bixin or lycopene was incubated with J774A.1 macrophage cells and exposed to oxLDL. The levels of ROS, RNS, GSH, nitrite, mitochondrial function, and foam cell formation, as well as the expression of proteins related to the antioxidant and inflammatory status, were evaluated. The effect of bixin in inhibiting in vitro human-isolated LDL oxidation was more potent (5-6-fold) than that of lycopene. Bixin pretreatment reduced the atherogenic signaling triggered by oxLDL in the macrophages, namely the generation of reactive species, disturbance of nitric oxide homeostasis, mitochondrial dysfunction, and foam cell formation. The cytoprotective effects of bixin were accompanied by the upregulation of Nrf2 and the downregulation of the NF-kB pathways. Lycopene showed the same protective effect as bixin, except that it did not prevent mitochondrial dysfunction. The efficient performance of bixin makes it an ideal candidate for further trials as a new nutraceutical compound for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Sabrina Somacal
- Graduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | - Jade de Oliveira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-000, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetic and Metabolism, Institute of Biological Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
2
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Duan R, Li L, Yan H, He M, Gao K, Xing S, Ji H, Wang J, Cao B, Li D, Xie H, Zhao S, Wu Y, Jiang Y, Xiao J, Gu Q, Li M, Zheng X, Chen L, Wang J. Novel Insight into the Potential Pathogenicity of Mitochondrial Dysfunction Resulting from PLP1 Duplication Mutations in Patients with Pelizaeus-Merzbacher Disease. Neuroscience 2021; 476:60-71. [PMID: 34506833 DOI: 10.1016/j.neuroscience.2021.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Among the hypomyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) is a representative disorder. The disease is caused by different types of PLP1 mutations, among which PLP1 duplication accounts for ∼70% of the mutations. Previous studies have shown that PLP1 duplications lead to PLP1 retention in the endoplasmic reticulum (ER); in parallel, recent studies have demonstrated that PLP1 duplication can also lead to mitochondrial dysfunction. As such, the respective roles and interactions of the ER and mitochondria in the pathogenesis of PLP1 duplication are not clear. In both PLP1 patients' and healthy fibroblasts, we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer and examined the interactions between the ER and mitochondria with super-resolution microscopy (spinning-disc pinhole-based structured illumination microscopy, SD-SIM). For the first time, we demonstrated that PLP1 duplication mutants had closer ER-mitochondrion interfaces mediated through structural and morphological changes in both the ER and mitochondria-associated membranes (MAMs). These changes in both the ER and mitochondria then led to mitochondrial dysfunction, as reported previously. This work highlights the roles of MAMs in bridging PLP1 expression in the ER and pathogenic dysfunction in mitochondria, providing novel insight into the pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication. These findings suggest that interactions between the ER and mitochondria may underlie pathogenic mechanisms of hypomyelinating leukodystrophies diseases at the organelle level.
Collapse
Affiliation(s)
- Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Miao He
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jianyong Wang
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Binbin Cao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Dongxiao Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Ming Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xiaolu Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China; Institute of Biomedical Engineering, Beijing Institute of Collaborative Innovation (BICI), Beijing 100094, China.
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China; Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100083, China.
| |
Collapse
|
4
|
Greilberger J, Greilberger M, Wintersteiger R, Zangger K, Herwig R. Alpha-Ketoglutarate: A Potential Inner Mitochondrial and Cytosolic Protector against Peroxynitrite and Peroxynitrite-Induced Nitration? Antioxidants (Basel) 2021; 10:antiox10091501. [PMID: 34573133 PMCID: PMC8468307 DOI: 10.3390/antiox10091501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
The generation of peroxynitrite (ONOO-) is associated with several diseases, including atherosclerosis, hypertension, neurodegeneration, cancer, inflammation, and sepsis. Alpha-ketoglutarate (αKG) is a known potential highly antioxidative agent for radical oxidative species such as peroxides. The question arises as to whether αKG is also a potential scavenger of ONOO- and a potential protector against ONOO--mediated nitration of proteins. NMR studies of 1 mM αKG in 100 mM phosphate-buffered saline at pH 7.4 and pH 6.0 were carried out in the presence or absence of a final concentration of 2 mM ONOO-. An ONOO--luminol-induced chemiluminescence reaction was used to measure the scavenging function of several concentrations of αKG; quantification of αKG was performed via spectrophotometric enzymatic assay of αKG in the absence or presence of 0, 1, or 2 mM ONOO-. The nitration of tyrosine residues on proteins was measured on ONOO--treated bovine serum albumin (BSA) in the presence or absence of 0-24 mM αKG by an ELISA technique using a specific anti-IgG against nitro-tyrosine. The addition of ONOO- to αKG led to the formation of succinic acid and nitrite at pH 7.0, but not at pH 6.0, as αKG was stable against ONOO-. The absorbance of enzymatically estimated αKG at the time point of 30 min was significantly lower in favour of ONOO- (1 mM: 0.21 ± 0.03, 2 mM: 0.12 ± 0.05 vs. 0 mM: 0.32 ± 0.02; p < 0.001). The luminol technique showed an inverse logarithmic correlation of the ONOO- and αKG concentrations (y = -2 × 105 ln(x) + 1 × 106; r2 = 0.99). The usage of 4 mM αKG showed a significant reduction by nearly half in the chemiluminescence signal (284,456 ± 29,293 cps, p < 0.001) compared to the control (474,401 ± 18,259); for 20 and 200 mM αKG, there were further reductions to 163,546 ± 26,196 cps (p < 0.001) and 12,658 ± 1928 cps (p < 0.001). Nitrated tyrosine residues were estimated using the ELISA technique. A negative linear correlation was obtained by estimating nitrated tyrosine residues in the presence of αKG (r2 = 0.94): a reduction by half of nitrated tyrosine was estimated using 12 mM αKG compared to the control (326.1 ± 39.6 nmol vs. 844.5 ± 128.4 nmol; p < 0.001).
Collapse
Affiliation(s)
- Joachim Greilberger
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Physiological Chemistry, Medical University of Graz, 8010 Graz, Austria
- Schwarzl Medical Center, Institute of Scientific Laboratory, 8301 Graz, Austria;
- Correspondence:
| | - Michaela Greilberger
- Schwarzl Medical Center, Institute of Scientific Laboratory, 8301 Graz, Austria;
| | - Reinhold Wintersteiger
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Klaus Zangger
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria;
| | - Ralf Herwig
- German Medical Center, Department of Urology Surgery, Dubai 665664, United Arab Emirates;
| |
Collapse
|
5
|
Wang X, Huan Y, Li C, Cao H, Sun S, Lei L, Liu Q, Liu S, Ji W, Liu H, Huang K, Zhou J, Shen Z. Diphenyl diselenide alleviates diabetic peripheral neuropathy in rats with streptozotocin-induced diabetes by modulating oxidative stress. Biochem Pharmacol 2020; 182:114221. [DOI: 10.1016/j.bcp.2020.114221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
|
6
|
Hsu YJ, Lin CW, Cho SL, Yang WS, Yang CM, Yang CH. Protective Effect of Fenofibrate on Oxidative Stress-Induced Apoptosis in Retinal-Choroidal Vascular Endothelial Cells: Implication for Diabetic Retinopathy Treatment. Antioxidants (Basel) 2020; 9:antiox9080712. [PMID: 32764528 PMCID: PMC7464418 DOI: 10.3390/antiox9080712] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes and one of the leading causes of blindness in developed countries. Two large clinical studies showed that fenofibrate, a peroxisome proliferator-activated receptor type α (PPAR-α) agonist, reduces DR progression. We evaluated the protective effects of fenofibrate on retinal/choroidal vascular endothelial cells under oxidative stress and investigated the underlying mechanisms using RF/6A cells as the model system and paraquat (PQ) to induce oxidative stress. Pretreatment with fenofibrate suppressed reactive oxygen species (ROS) production, decreased cellular apoptosis, diminished the changes in the mitochondrial membrane potential, increased the mRNA levels of peroxiredoxin (Prx), thioredoxins (Trxs), B-cell lymphoma 2 (Bcl-2), and Bcl-xl, and reduced the level of B-cell lymphoma 2-associated X protein (Bax) in PQ-stimulated RF/6A cells. Western blot analysis revealed that fenofibrate repressed apoptosis through cytosolic and mitochondrial apoptosis signal-regulated kinase-1 (Ask)-Trx-related signaling pathways, including c-Jun amino-terminal kinase (JNK) phosphorylation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage. These protective effects of fenofibrate on RF/6A cells may be attributable to its anti-oxidative ability. Our research suggests that fenofibrate could serve as an effective adjunct therapy for ocular oxidative stress-related disorders, such as DR.
Collapse
Affiliation(s)
- Ying-Jung Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
| | - Chao-Wen Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Sheng-Li Cho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
- Correspondence: ; Tel.: +886-2-23123456 (ext. 63193)
| |
Collapse
|
7
|
Panday S, Talreja R, Kavdia M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc Res 2020; 131:104010. [PMID: 32335268 DOI: 10.1016/j.mvr.2020.104010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Glutathione (GSH) and GSH/glutathione peroxidase (GPX) enzyme system is essential for normal intracellular homeostasis and gets disturbed under pathophysiologic conditions including endothelial dysfunction. Overproduction of reactive oxidative species (ROS) and reactive nitrogen species (RNS) including superoxide (O2•-), and the loss of nitric oxide (NO) bioavailability is a characteristic of endothelial dysfunction. The GSH/GPX system play an important role in eliminating ROS/RNS. Studies have provided important information regarding the interactions of ROS/RNS with the GSH/GPX in biological systems; however, it is not clear how this cross talk affect these reactive species and GSH/GPX enzyme system, under physiologic and oxidative/nitrosative stress conditions. In the present study, we developed a detailed endothelial cell kinetic model to understand the relationship amongst the key enzyme systems including GSH, GPX, peroxiredoxin (Prx) and reactive species, such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and dinitrogen trioxide (N2O3). Our simulation results showed that the alterations in the generation rates of O2•- and NO led to the formation of a wide range of ROS and RNS. Simulations performed by varying the ratio of O2•- to NO generation rates as well as GSH and GPX concentrations showed that the GPX reducing capacity was dependent on GSH availability, level of oxidative/nitrosative stress, and can be attributed to N2O3 levels, but not to H2O2 and ONOO-. Our results showed that N2O3 mediated switch-like depletion in GSH and the incorporation of Prx had no considerable effect on the ROS/RNS species other than ONOO- and H2O2. The analysis presented in this study will improve our understanding of vascular diseases in which the levels and oxidation states of GSH, GPX and/or Prx are significantly altered and pharmacological interventions show limited benefits.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Raghav Talreja
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
8
|
Galant LS, Rafique J, Braga AL, Braga FC, Saba S, Radi R, da Rocha JBT, Santi C, Monsalve M, Farina M, de Bem AF. The Thiol-Modifier Effects of Organoselenium Compounds and Their Cytoprotective Actions in Neuronal Cells. Neurochem Res 2020; 46:120-130. [PMID: 32285377 DOI: 10.1007/s11064-020-03026-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/10/2023]
Abstract
Most pharmacological studies concerning the beneficial effects of organoselenium compounds have focused on their ability to mimic glutathione peroxidase (GPx). However, mechanisms other than GPx-like activity might be involved on their biological effects. This study was aimed to investigate and compare the protective effects of two well known [(PhSe)2 and PhSeZnCl] and two newly developed (MRK Picolyl and MRK Ester) organoselenium compounds against oxidative challenge in cultured neuronal HT22 cells. The thiol peroxidase and oxidase activities were performed using the glutathione reductase (GR)-coupled assay. In order to evaluate protective effects of the organoselenium compounds against oxidative challenge in neuronal HT22 cells, experiments based on glutamate-induced oxytosis and SIN-1-mediated peroxynitrite generation were performed. The thiol peroxidase activities of the studied organoselenium compounds were smaller than bovine erythrocytes GPx enzyme. Besides, (PhSe)2 and PhSeZnCl showed higher thiol peroxidase and lower thiol oxidase activities compared to the new compounds. MRK Picolyl and MRK Ester, which showed lower thiol peroxidase activity, showed higher thiol oxidase activity. Both pre- or co-treatment with (PhSe)2, PhSeZnCl, MRK Picolyl and MRK Ester protected HT22 cells against glutamate-induced cytotoxicity. (PhSe)2 and MRK Picolyl significantly prevented peroxinitrite-induced dihydrorhodamine oxidation, but this effect was observed only when HT22 were pre-treated with these compounds. The treatment with (PhSe)2 increased the protein expression of antioxidant defences (Prx3, CAT and GCLC) in HT22 cells. Taking together, our results suggest that the biological effects elicited by these compounds are not directly related to their GPx-mimetic and thiol oxidase activities, but might be linked to the up-regulation of endogenous antioxidant defences trough their thiol-modifier effects.
Collapse
Affiliation(s)
- Letícia Selinger Galant
- Biochemistry PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Jamal Rafique
- Department of Chemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.,Instituto de Química, Universidade Federal Do Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | - Antônio Luiz Braga
- Department of Chemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Felipe Camargo Braga
- Instituto de Química, Universidade Federal Do Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | - Sumbal Saba
- Centro de Ciências Naturais E Humanas-CCNH, Universidade Federal Do ABC, Santo André, SP, 09210-580, Brazil
| | - Rafael Radi
- Center for Free Radical and Biomedical Research (CEINBIO), Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | | | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Marcelo Farina
- Biochemistry PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | - Andreza Fabro de Bem
- Biochemistry PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil. .,Departament of Physiological Science, Institute for Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
9
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
10
|
Radi R. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019; 87:83-89. [DOI: 10.1016/j.niox.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
|
11
|
Soares ATG, Rodrigues LBL, Salgueiro WG, Dal Forno AHDC, Rodrigues CF, Sacramento M, Franco J, Alves D, Oliveira RDP, Pinton S, Ávila DS. Organoselenotriazoles attenuate oxidative damage induced by mitochondrial dysfunction in mev-1 Caenorhabditis elegans mutants. J Trace Elem Med Biol 2019; 53:34-40. [PMID: 30910204 DOI: 10.1016/j.jtemb.2019.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Organic selenium compounds have several pharmacological activities already described, as anti-inflammatory and antitumor activities, which have been attributed to their antioxidant effects. Because they are promising in pharmacology, the synthesis of these compounds has increased significantly. As many new molecules are synthesized the use of a simple model like Caenorhabditis elegans is highly advantageous for initial evaluation of the toxicity and therapeutic potential of these molecules. The objective of this study was to evaluate the toxicity and antioxidant capacity of a series of selenotriazoles compounds in C. elegans. The animals were exposed to the compounds in liquid medium for only 30 min at the first larval stage (L1). The compounds had no toxic effects at the concentrations tested. Treatment with selenotriazoles (10 μM) partially reversed the stress induced by the pesticide paraquat (1 mM). Se-Tz Ia compound partially increased the survival of worms treated with H2O2 (0.5 mM). The compounds also increased the longevity of mev-1 mutants, which have a reduced life span by the production of excessive reactive oxygen species (ROS) in the mitochondria caused by a mutation in complex II of the electron transport chain. In addition, the compounds reduced the levels of ROS determined by the fluorescent probe DCF-DA as well as also reduced catalase enzyme activity in these animals. Based on the results found, it is possible to conclude that the compounds have antioxidant activity mainly in oxidative stress condition generated by a mitochondrial dysfunction in C. elegans.
Collapse
Affiliation(s)
- Ana Thalita Gonçalves Soares
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Luiz Brasil Lopes Rodrigues
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Willian Goulart Salgueiro
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Ana Helena de Castro Dal Forno
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Cristiane Freitas Rodrigues
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Manoela Sacramento
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa-LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia-GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeferson Franco
- Interdisciplinary Center for Biotechnology Research, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, 97.300-000, São Gabriel, RS, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa-LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia-GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Daiana S Ávila
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil.
| |
Collapse
|
12
|
De Armas MI, Esteves R, Viera N, Reyes AM, Mastrogiovanni M, Alegria TGP, Netto LES, Tórtora V, Radi R, Trujillo M. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radic Biol Med 2019; 130:369-378. [PMID: 30391677 DOI: 10.1016/j.freeradbiomed.2018.10.451] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.
Collapse
Affiliation(s)
- María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Romina Esteves
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Thiago G P Alegria
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
13
|
Quispe RL, Jaramillo ML, Galant LS, Engel D, Dafre AL, Teixeira da Rocha JB, Radi R, Farina M, de Bem AF. Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol 2019; 20:118-129. [PMID: 30308475 PMCID: PMC6176650 DOI: 10.1016/j.redox.2018.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are critical events in neurodegenerative diseases; therefore, molecules that increase cellular antioxidant defenses represent a future pharmacologic strategy to counteract such conditions. The aim of this study was to investigate the potential protective effect of (PhSe)2 on mouse hippocampal cell line (HT22) exposed to tert-BuOOH (in vitro model of oxidative stress), as well as to elucidate potential mechanisms underlying this protection. Our results showed that tert-BuOOH caused time- and concentration-dependent cytotoxicity, which was preceded by increased oxidants production and mitochondrial dysfunction. (PhSe)2 pre-incubation significantly prevented these cytotoxic events and the observed protective effects were paralleled by the upregulation of the cellular glutathione-dependent antioxidant system: (PhSe)2 increased GSH levels (> 60%), GPx activity (6.9-fold) and the mRNA expression of antioxidant enzymes Gpx1 (3.9-fold) and Gclc (2.3-fold). Of note, the cytoprotective effect of (PhSe)2 was significantly decreased when cells were treated with mercaptosuccinic acid, an inhibitor of GPx, indicating the involvement of GPx modulation in the observed protective effect. In summary, the present findings bring out a new action mechanism concerning the antioxidant properties of (PhSe)2. The observed upregulation of the glutathione-dependent antioxidant system represents a future pharmacologic possibility that goes beyond the well-known thiol-peroxidase activity of this compound.
Collapse
Affiliation(s)
- Ruth Liliám Quispe
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Lorenz Jaramillo
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, SC, Brazil
| | - Leticia Selinger Galant
- Biochemistry PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daiane Engel
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Rafael Radi
- Department of Biochemistry and Center for Free Radical and Biomedical Research (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Farina
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Andreza Fabro de Bem
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
14
|
Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J. Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 2018; 52:1158-1169. [DOI: 10.1080/10715762.2018.1536824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diones Bueno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daiane Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emily Waczuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
15
|
Carballal S, Valez V, Alvarez-Paggi D, Tovmasyan A, Batinic-Haberle I, Ferrer-Sueta G, Murgida DH, Radi R. Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite. Free Radic Biol Med 2018; 126:379-392. [PMID: 30144631 DOI: 10.1016/j.freeradbiomed.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Cationic manganese(III) ortho N-substituted pyridylporphyrins (MnP) act as efficient antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. Importantly, MnP can reach mitochondria offering protection against reactive species in different animal models of disease. Although an LC-MS/MS-based method for MnP quantitation and subcellular distribution has been reported, a direct method capable of evaluating both the uptake and the redox state of MnP in living cells has not yet been developed. In the present work we applied resonance Raman (RR) spectroscopy to analyze the intracellular accumulation of two potent MnP-based lipophilic SOD mimics, MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+ within endothelial cells. RR experiments with isolated mitochondria revealed that the reduction of Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. To assess the combined impact of reactivity and bioavailability, we studied the kinetics of Mn(III)TnBuOE-2-PyP5+ with peroxynitrite and evaluated the cytoprotective capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation of cell damage and prevention of apoptotic cell death. These data introduce a novel application of RR spectroscopy for the direct detection of MnP and their redox states inside living cells, and helps to rationalize their antioxidant capacity in biological systems.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gerardo Ferrer-Sueta
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
16
|
Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A 2018; 115:5839-5848. [PMID: 29802228 DOI: 10.1073/pnas.1804932115] [Citation(s) in RCA: 648] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxygen-derived free radicals and related oxidants are ubiquitous and short-lived intermediates formed in aerobic organisms throughout life. These reactive species participate in redox reactions leading to oxidative modifications in biomolecules, among which proteins and lipids are preferential targets. Despite a broad array of enzymatic and nonenzymatic antioxidant systems in mammalian cells and microbes, excess oxidant formation causes accumulation of new products that may compromise cell function and structure leading to cell degeneration and death. Oxidative events are associated with pathological conditions and the process of normal aging. Notably, physiological levels of oxidants also modulate cellular functions via homeostatic redox-sensitive cell signaling cascades. On the other hand, nitric oxide (•NO), a free radical and weak oxidant, represents a master physiological regulator via reversible interactions with heme proteins. The bioavailability and actions of •NO are modulated by its fast reaction with superoxide radical ([Formula: see text]), which yields an unusual and reactive peroxide, peroxynitrite, representing the merging of the oxygen radicals and •NO pathways. In this Inaugural Article, I summarize early and remarkable developments in free radical biochemistry and the later evolution of the field toward molecular medicine; this transition includes our contributions disclosing the relationship of •NO with redox intermediates and metabolism. The biochemical characterization, identification, and quantitation of peroxynitrite and its role in disease processes have concentrated much of our attention. Being a mediator of protein oxidation and nitration, lipid peroxidation, mitochondrial dysfunction, and cell death, peroxynitrite represents both a pathophysiologically relevant endogenous cytotoxin and a cytotoxic effector against invading pathogens.
Collapse
|
17
|
Mano CM, Guaratini T, Cardozo KHM, Colepicolo P, Bechara EJH, Barros MP. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model. Mar Drugs 2018; 16:md16040126. [PMID: 29649159 PMCID: PMC5923413 DOI: 10.3390/md16040126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 01/14/2023] Open
Abstract
Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes.
Collapse
Affiliation(s)
- Camila M Mano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
- Instituto de Ciências da Atividade Física e do Esporte (ICAFE), Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil.
- Superintendência da Polícia Técnico Científica, 05507-060 São Paulo, SP, Brazil.
| | - Thais Guaratini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
- Lychnoflora Pesquisa e Desenvolvimento em Produtos Naturais LTDA, 14030-090 Ribeirão Preto, SP, Brazil.
| | - Karina H M Cardozo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
- Grupo Fleury, 04344-070 São Paulo, SP, Brazil.
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
| | - Etelvino J H Bechara
- Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, UNIFESP, 09972-270 Diadema, SP, Brazil.
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
| | - Marcelo P Barros
- Instituto de Ciências da Atividade Física e do Esporte (ICAFE), Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil.
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| |
Collapse
|
18
|
Quispe RL, Canto RFS, Jaramillo ML, Barbosa FAR, Braga AL, de Bem AF, Farina M. Design, Synthesis, and In Vitro Evaluation of a Novel Probucol Derivative: Protective Activity in Neuronal Cells Through GPx Upregulation. Mol Neurobiol 2018; 55:7619-7634. [PMID: 29430618 DOI: 10.1007/s12035-018-0939-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/28/2018] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that probucol (PB), a hipocholesterolemic agent with antioxidant and anti-inflammatory properties, presents neuroprotective properties. On the other hand, adverse effects have limited PB's clinical application. Thus, the search for PB derivatives with no or less adverse effects has been a topic of research. In this study, we present a novel organoselenium PB derivative (RC513) and investigate its potential protective activity in an in vitro experimental model of oxidative toxicity induced by tert-butyl hydroperoxide (tBuOOH) in HT22 neuronal cells, as well as exploit potential protective mechanisms. tBuOOH exposure caused a significant decrease in the cell viability, which was preceded by (i) increased reactive species generation and (ii) decreased mitochondrial maximum oxygen consumption rate. RC513 pretreatment (48 h) significantly prevented the tBuOOH-induced decrease of cell viability, RS generation, and mitochondrial dysfunction. Of note, RC513 significantly increased glutathione peroxidase (GPx) activity and mRNA expression of GPx1, a key enzyme involved in peroxide detoxification. The use of mercaptosuccinic acid, an inhibitor of GPx, significantly decreased the protective activity of RC513 against tBuOOH-induced cytotoxicity in HT22 cells, highlighting the importance of GPx upregulation in the observed protection. In summary, the results showed a significant protective activity of a novel PB derivative against tBuOOH-induced oxidative stress and mitochondrial dysfunction, which was related to the upregulation of GPx. Our results point to RC513 as a promising neuroprotective molecule, even though studies concerning potential beneficial effects and safety aspects of RC513 under in vivo conditions are well warranted.
Collapse
Affiliation(s)
- Ruth Liliám Quispe
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil.
| | - Rômulo Faria Santos Canto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil
| | - Flavio Augusto Rocha Barbosa
- Departamento de Química, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Antônio Luiz Braga
- Departamento de Química, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Andreza Fabro de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
19
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
20
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Galant LS, Braga MM, de Souza D, de Bem AF, Sancineto L, Santi C, da Rocha JBT. Induction of reactive oxygen species by diphenyl diselenide is preceded by changes in cell morphology and permeability in Saccharomyces cerevisiae. Free Radic Res 2017; 51:657-668. [PMID: 28840761 DOI: 10.1080/10715762.2017.1355054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16 h of treatment with 2, 4, 6, and 10 μM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16 h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20 μM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2 h (10 μM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10 μM) was observed after 3 h of incubation, however, ROS production occurs only at 16 h of incubation (10 μM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20 μM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.
Collapse
Affiliation(s)
- Leticia Selinger Galant
- a Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa , Maria , Brazil
| | - Marcos Martins Braga
- a Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa , Maria , Brazil
| | - Diego de Souza
- a Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa , Maria , Brazil
| | - Andreza Fabro de Bem
- b Departamento Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Luca Sancineto
- c Group of Catalysis and Organic Green Chemistry Department of Pharmaceutical Sciences , University of Perugia , Perugia , Italy
| | - Claudio Santi
- c Group of Catalysis and Organic Green Chemistry Department of Pharmaceutical Sciences , University of Perugia , Perugia , Italy
| | - Joao Batista Teixeira da Rocha
- a Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa , Maria , Brazil
| |
Collapse
|
22
|
Hybrid Nitric Oxide Donor and its Carrier for the Treatment of Peripheral Arterial Diseases. Sci Rep 2017; 7:8692. [PMID: 28821752 PMCID: PMC5562917 DOI: 10.1038/s41598-017-08441-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) has been known to promote physiological angiogenesis to treat peripheral arterial diseases (PAD) by increasing the vascular endothelial growth factor (VEGF) level in endothelial cells (ECs) and preventing platelet adherence and leukocyte chemotaxis. However, the ongoing ischemic event during peripheral ischemia produces superoxide and diminishes the NO bioavailability by forming toxic peroxynitrite anion. Here we disclose an efficacious hybrid molecule 4-(5-Amino-1,2,3-oxadiazol-3-yl)-2,2,6,6-tetramethyl-1-piperidinol (SA-2) containing both antioxidant and NO donor functionalities that provide a therapeutic level of NO necessary to promote angiogenesis and to protect ECs against hydrogen peroxide-induced oxidative stress. Compound SA-2 scavenged reactive oxygen species, inhibited proliferation and migration of smooth muscle cells (SMCs) and promoted the tube formation from ECs. Copolymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with SA-2 provided a sustained release of NO over days, improved aqueous stability in serum, protected ECs against oxidative stress, and enhanced angiogenesis under stress conditions as compared to that of the control in the in vitro matrigel tube formation assay. These results indicated the potential use of SA-2 nanoparticles as an alternative therapy to treat PAD.
Collapse
|
23
|
Carvalho NR, Tassi CC, Dobraschinski F, Amaral GP, Zemolin AP, Golombieski RM, Dalla Corte CL, Franco JL, Mauriz JL, González-Gallego J, Soares FA. Reversal of bioenergetics dysfunction by diphenyl diselenide is critical to protection against the acetaminophen-induced acute liver failure. Life Sci 2017; 180:42-50. [DOI: 10.1016/j.lfs.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 02/05/2023]
|
24
|
Rios N, Piacenza L, Trujillo M, Martínez A, Demicheli V, Prolo C, Álvarez MN, López GV, Radi R. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate. Free Radic Biol Med 2016; 101:284-295. [PMID: 27641237 DOI: 10.1016/j.freeradbiomed.2016.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Gloria V López
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
25
|
Loren P, Cheuquemán C, Sánchez E, Risopatrón J, Arias ME, Felmer R, Sánchez R. Effect of short-term exposure of cumulus-oocyte complex to 3-morpholinosydnonimine on in vitro embryo development and gene expression in cattle. Reprod Domest Anim 2016; 51:1010-1019. [PMID: 27644683 DOI: 10.1111/rda.12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Abstract
Short-term exposure of gametes to different types of stress might induce stress tolerance in mammalian embryos. The aim of this study was to evaluate the effect of short-term exposure of bovine mature cumulus-oocyte complex (COC) to 3-morpholinosydnonimine (SIN-1) on subsequent in vitro embryo development, embryo quality and relative gene expression. Matured COCs were incubated with SIN-1 (0, 0.1, 1, 10 and 100 μM SIN-1) for 1 hr before in vitro fertilization and zygotes were cultured until Day 7. The cleavage rate at 72 hr did not show any differences among groups. However, the blastocyst rate on Day 7 decreased with all treatments evaluated, with the embryos generated with 10 μM SIN-1 showing the lowest embryo production rate. Embryo quality analysis did not show any differences in total cell number (TCN) or inner cell mass (ICM) among groups. Relative gene expression analysis showed a downregulation of eNOS expression and an upregulation of nNOS expression in all treatments evaluated compared to the control group. Also, a downregulation was observed in some treatments: SOD2 at 0.1 μM; SOD1 at 0.1 and 100 μM; PRDX5 at 0.1, 10 and 100 μM; and NANOG at 10 and 100 μM; and an upregulation of CDX2 expression was observed at 100 μM. The other genes (OCT4, HIF1A, HSPA1A, BCL2A and iNOS) did not show any differences in the relative gene expression. These results suggest that the short-term exposure of mature bovine COCs to SIN-1 does not induce stress tolerance and has no beneficial effect on bovine in vitro embryo production.
Collapse
Affiliation(s)
- P Loren
- Student of Doctoral Program in Sciences major in Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco, Chile.,Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - C Cheuquemán
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - E Sánchez
- Student of Doctoral Program in Sciences major in Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco, Chile.,Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - J Risopatrón
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Basic Science, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural and Livestock Production, Faculty of Farming, Livestock and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural and Livestock Production, Faculty of Farming, Livestock and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
26
|
Zaccaria F, Wolters LP, Fonseca Guerra C, Orian L. Insights on selenium and tellurium diaryldichalcogenides: A benchmark DFT study. J Comput Chem 2016; 37:1672-80. [DOI: 10.1002/jcc.24383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Francesco Zaccaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Lando P. Wolters
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Laura Orian
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| |
Collapse
|
27
|
Liu MH, Zhang Y, He J, Tan TP, Wu SJ, Fu HY, Chen YD, Liu J, LE QF, Hu HJ, Yuan C, Lin XL. Upregulation of peroxiredoxin III in doxorubicin-induced cytotoxicity and the FoxO3a-dependent expression in H9c2 cardiac cells. Exp Ther Med 2015; 10:1515-1520. [PMID: 26622517 DOI: 10.3892/etm.2015.2693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 08/03/2015] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an efficient drug used in cancer therapy; however, it produces reactive oxygen species (ROS) that induce severe cytotoxicity, limiting its clinical application. The aim of the present study was to investigate the role of peroxiredoxin III (Prx III) in DOX-induced H9c2 cell injuries. Following DOX treatment, the expression of phosphorylated-FoxO3a (p-FoxO3a) was decreased and Prx III expression was increased in H9c2 cells. In order to detect whether oxidative stress was involved in the induction of Prx III expression by FoxO3a, exogenous H2O2 was used to induce oxidative stress in the H9c2 cells. Apoptosis of H9c2 cardiomyocytes was assessed using methyl thiazolyl tetrazolium assay and Hoechst staining. The levels of Prx III and p-FoxO3a were evaluated using western blot analysis. As expected, H2O2 was found to mimic the effect of DOX, decreasing the expression of p-FoxO3a and increasing the expression of Prx III. In addition, the study evaluated whether the transcription factor FoxO3a was essential for the expression of Prx III. Pretreatment of H9c2 cells with N-acetyl-L-cysteine (NAC), a scavenger of ROS, prior to exposure to DOX dramatically increased the phosphorylation of FoxO3a and led to a marked reduction in Prx III expression in the H9c2 cells. In conclusion, the results of the current study suggest that FoxO3a mediates the expression of Prx III in DOX-induced injuries.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan Zhang
- Department of Pathology, Hunan Mawangdui Hospital, Changsha, Hunan 410016, P.R. China
| | - Jun He
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian-Ping Tan
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shao-Jian Wu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Yun Fu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu-Dan Chen
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qun-Fang LE
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Heng-Jing Hu
- Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Cong Yuan
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Xiao-Long Lin
- Department of Pathology, The Third People's Hospital of Huizhou, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| |
Collapse
|