1
|
Wu CY, Wang KQ, Qin YY, Wang HW, Wu MM, Zhu XD, Lu XY, Zhu MM, Lu CS, Hu QQ. Micheliolide ameliorates severe acute pancreatitis in mice through potentiating Nrf2-mediated anti-inflammation and anti-oxidation effects. Int Immunopharmacol 2024; 143:113490. [PMID: 39467351 DOI: 10.1016/j.intimp.2024.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Severe acute pancreatitis (SAP) is an acute inflammatory injury disease with significant mortality rate and currently without effective strategy being available. Inflammation and oxidative stress play central roles in the etiology of SAP. Micheliolide (MCL), an active monomeric component isolated from Michelia champaca, has been proved its multiple therapeutic properties including anti-inflammatory, antioxidant and anti-cancer. Nevertheless, the therapeutic effect and underlying mechanism of MCL in SAP still remain unclear. Here, we found that caerulein with lipopolysaccharide (LPS)-induced SAP murine models exhibited severe pancreatic injury, including necrosis, edema, and vacuolation of acinar cells in the pancreas, elevated serum levels of amylase and lipase, and reduced number of the exocrine cells. As expected, MCL treatment alleviated these side effects. Mechanistically, MCL triggered nuclear factor erythroid 2-related factor 2 (Nrf2) activation, thereby activating Nrf2-regulated antioxidative pathways and inhibiting nuclear factor kappa B p65 (NF-κB p65)-mediated inflammatory response, resulting in protection against pancreatic injury in SAP mice. In addition, Nrf2 gene deficiency abolished the beneficial effects of MCL on SAP-induced pancreatic inflammation and oxidative stress and blocked the ability of MCL to alleviate the pancreatic injury in SAP mice. Collectively, these findings indicated that the suppression of SAP-induced pancreatic injury by MCL was at least in part due to Nrf2-mediated anti-oxidation effect and inhibition of inflammation.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke-Qi Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Ying Qin
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hong-Wei Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Min-Min Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xian-Dong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xin-Yu Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, China
| | - Mian-Mian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qing-Qing Hu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Lnc-PFAR facilitates autophagy and exacerbates pancreatic fibrosis by reducing pre-miR-141 maturation in chronic pancreatitis. Cell Death Dis 2021; 12:996. [PMID: 34697288 PMCID: PMC8547218 DOI: 10.1038/s41419-021-04236-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Chronic pancreatitis (CP) is described as progressive inflammatory fibrosis of pancreas, accompanied with irreversible impaired endocrine and exocrine insufficiency. Pancreatic stellate cells (PSCs) are widely distributed in the stroma of the pancreas and PSCs activation has been shown as one of the leading causes for pancreatic fibrosis. Our previous study has revealed that autophagy is dramatically activated in CP tissues, which facilitates PSCs activation and pancreatic fibrosis. Long non-coding RNAs (LncRNAs) have been recognized as crucial regulators for fibrosis-related diseases. LncRNAs interact with RNA binding protein or construct competitive endogenous RNA (ceRNA) hypothesis which elicited the fibrotic processes. Until now, the effects of lncRNAs on PSCs activation and pancreatic fibrosis have not been clearly explored. In this study, a novel lncRNA named Lnc-PFAR was found highly expressed in mouse and human CP tissues. Our data revealed that Lnc-PFAR facilitates PSCs activation and pancreatic fibrosis via RB1CC1-induced autophagy. Lnc-PFAR reduces miR-141 expression by suppressing pre-miR-141 maturation, which eventually upregulates the RB1CC1 and fibrosis-related indicators expression. Meanwhile, Lnc-PFAR enhanced PSCs activation and pancreatic fibrosis through trigging autophagy. Our study interrogates a novel lncRNA-induced mechanism in promoting the development of pancreatic fibrosis, and Lnc-PFAR is suggested to be a prospective therapeutic target in clinical scenarios.
Collapse
|
4
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
5
|
Lee J, Lim JW, Kim H. Lycopene Inhibits Oxidative Stress-Mediated Inflammatory Responses in Ethanol/Palmitoleic Acid-Stimulated Pancreatic Acinar AR42J Cells. Int J Mol Sci 2021; 22:ijms22042101. [PMID: 33672594 PMCID: PMC7924044 DOI: 10.3390/ijms22042101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
High alcohol intake results in the accumulation of non-oxidative ethanol metabolites such as fatty acid ethyl esters (FAEEs) in the pancreas. High FAEE concentrations mediate pancreatic acinar cell injury and are associated with alcoholic pancreatitis. Treatment with ethanol and the fatty acid palmitoleic acid (EtOH/POA) increased the levels of palmitoleic acid ethyl ester and induced zymogen activation and cytokine expression in pancreatic acinar cells. EtOH/POA induces nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production and pancreatic acinar cell injury. Lycopene, a bright-red carotenoid, is a potent antioxidant due to its high number of conjugated double bands. This study aimed to investigate whether lycopene inhibits the EtOH/POA-induced increase in ROS production, zymogen activation, and expression of the inflammatory cytokine IL-6 in EtOH/POA-stimulated pancreatic acinar AR42J cells. EtOH/POA increased the ROS levels, NADPH oxidase and NF-κB activities, zymogen activation, IL-6 expression, and mitochondrial dysfunction, which were inhibited by lycopene. The antioxidant N-acetylcysteine and NADPH oxidase 1 inhibitor ML171 suppressed the EtOH/POA-induced increases in ROS production, NF-κB activation, zymogen activation, and IL-6 expression. Therefore, lycopene inhibits EtOH/POA-induced mitochondrial dysfunction, zymogen activation, and IL-6 expression by suppressing NADPH oxidase-mediated ROS production in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
6
|
Choi S, Kim H. The Remedial Potential of Lycopene in Pancreatitis through Regulation of Autophagy. Int J Mol Sci 2020; 21:ijms21165775. [PMID: 32806545 PMCID: PMC7460830 DOI: 10.3390/ijms21165775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that degrades damaged organelles and recycles macromolecules to support cell survival. However, in certain disease states, dysregulated autophagy can play an important role in cell death. In pancreatitis, the accumulation of autophagic vacuoles and damaged mitochondria and premature activation of trypsinogen are shown in pancreatic acinar cells (PACs), which are the hallmarks of impaired autophagy. Oxidative stress mediates inflammatory signaling and cytokine expression in PACs, and it also causes mitochondrial dysfunction and dysregulated autophagy. Thus, oxidative stress may be a mediator for autophagic impairment in pancreatitis. Lycopene is a natural pigment that contributes to the red color of fruits and vegetables. Due to its antioxidant activity, it inhibited oxidative stress-induced expression of cytokines in experimental models of acute pancreatitis. Lycopene reduces cell death through the activation of 5′-AMP-activated protein kinase-dependent autophagy in certain cells. Therefore, lycopene may ameliorate pancreatitis by preventing oxidative stress-induced impairment of autophagy and/or by directly activating autophagy in PACs.
Collapse
|
7
|
Overexpression of Nrf2 Protects Against Lipopolysaccharide and Cerulein-Induced Pancreatitis In Vitro and In Vivo. Pancreas 2020; 49:420-428. [PMID: 32132514 DOI: 10.1097/mpa.0000000000001501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In this study, we focused on the function of nuclear factor E2-related factor 2 (Nrf2) in acute pancreatitis (AP), which has been shown to have protective effects in gliomas, hepatocytes, and astrocytes. METHODS Acute pancreatitis cell line and animal model were induced by administration of lipopolysaccharide and cerulein into the cell supernatant or intraperitoneal injection. Oxidative stress status was evaluated by measuring the level of amylase, C-reactive protein, malondialdehyde, superoxide dismutase, and myeloperoxidase. Morphological alterations in the pancreas were evaluated by hematoxylin-eosin staining, the wet-to-dry weight ratio, and the pathology injury scores. Western blot, reverse transcription-polymerase chain reaction, and immunofluorescence staining were performed to analyze the expression of Nrf2, Heme oxygenase 1, and NAD(P)H: quinone oxidoreductase 1. RESULTS Overexpression of Nrf2 inhibits oxidative stress and inflammatory responses by inducting the expression of superoxide dismutase as well as reducing the level of amylase, malondialdehyde, and myeloperoxidase in the AR42J rat pancreatic acinar cells in AP. Importantly, overexpression of Nrf2 displayed the same protective effect in vivo. Data from an AP rat model showed that Nrf2 could relieve pancreatic damage. CONCLUSIONS These results indicated that Nrf2 has a protective role in lipopolysaccharide and cerulein-induced cytotoxicity, providing potential therapeutic strategies for the treatment of AP.
Collapse
|
8
|
Duan PY, Ma Y, Li XN, Qu FZ, Ji L, Guo XY, Zhang WJ, Xiao F, Li L, Hu JS, Sun B, Wang G. Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med 2019; 51:1-17. [PMID: 31375658 PMCID: PMC6802613 DOI: 10.1038/s12276-019-0278-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Currently, preliminary results have confirmed the existence of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL)-dependent necroptosis of pancreatic acinar cells during early acute pancreatitis (AP), which might be a potential target for the effective regulation of necroinflammatory injury. However, the exact effect of receptor-interacting protein kinase 1 (RIPK1)-dependent regulated acinar cell necrosis on AP is still uncertain. In our study, we first explored the changes in the degree of local and systemic inflammation in AP rats when the activation of acinar cell RIPK1 was inhibited. The RIPK1 inhibitor Nec-1 was used to treat rats, and the levels of related inflammatory markers, necrosis indicators and apoptotic indicators were measured. Changes in pancreatic nuclear factor κB (NF-κB) and aquaporin 8 (AQP8) expression were noted. Next, the expression of AQP8 in AR42J cells was inhibited, and the degree of cell necrosis and inflammatory damage was found to be significantly reduced. Most importantly, we demonstrated that the RIPK1/NF-ĸB/AQP8 axis might be a potential regulatory pathway mediating RIPK1-dependent regulated acinar cell necrosis in early AP. Finally, we used the NF-κB inhibitor PDTC and Nec-1 to treat rats in different groups and measured the degree of pathological pancreatic injury, the activation of RIPK1, and the expression of NF-κB and AQP8. In summary, we hypothesized that there might be a RIPK1/NF-ĸB/AQP8 pathway controlling RIPK1-dependent regulated necrosis of acinar cells in AP, which might be a promising therapeutic target against AP-related injury.
Collapse
Affiliation(s)
- Peng-Yu Duan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan Ma
- Department of Medical Administration, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xi-Na Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feng-Zhi Qu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Ji
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Yu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ji-Sheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
9
|
Yang J, Ye Z, Mei D, Gu H, Zhang J. Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/β-catenin pathway in pancreatic cancer. Cancer Manag Res 2019; 11:4209-4221. [PMID: 31118816 PMCID: PMC6510228 DOI: 10.2147/cmar.s194453] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are abnormally expressed in various human tumors and play an important role in multiple tumorigeneses, including pancreatic cancer (PC). Materials and methods The present study was designed to evaluate the role of lncRNA DLX6-AS1 in tumorigenesis of PC. The expression of DLX6-AS1 and its effect on proliferation, apoptosis, migration, and invasion was investigated in vitro. Its effect on tumor growth and metastasis in vivo and its potential targets were also examined. Results We observed that DLX6-AS1 was highly expressed in PC tissues and PC cell lines, and was negatively correlated with the survival of PC patients. We found that overexpression of DLX6-AS1 promoted proliferation, migration, and invasion of PC cells, inhibited apoptosis, increased Bcl-2, cyclin D1, and MMP-2 expression, and decreased cleaved caspase 3, p27, and E-cadherin expression in PC cells. In addition, overexpression of DLX6-AS1 promoted PC growth by increasing tumor volume and weight and increasing the number of liver and lung metastatic foci. Knockdown of DLX6-AS1 showed an opposite effect in all the experiments. miR-497-5p was demonstrated to be a direct target of DLX6-AS1 and was regulated by DLX6-AS1. We also demonstrated that miR-497-5p targeted FZD4 and FZD6 and decreased their expression. miR-497-5p mimics also decreased the expression of FZD4, FZD6, and β-catenin; the expression of FZD4 or FZD6 was reversed by the overexpression of vectors FZD4 or FZD6, respectively, while the expression of β-catenin was reversed by either vector. Finally, the effect of DLX6-AS1 on proliferation, cell cycle, migration, invasion, and apoptosis of cells and expression of FZD4, FZD6, and β-catenin was neutralized by overexpression of vectors of miR-497-5p, FZD4, or FZD6, totally or partially. Conclusion Collectively, these findings suggested that DLX6-AS1/miR-497-5p/FZD4/FZD6/Wnt/β-catenin signaling pathway is involved in the pathogenesis of PC, and DLX6-AS1 could be a potential biomarker and target for PC treatment.
Collapse
Affiliation(s)
- Jiyong Yang
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| | - Zhen Ye
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| | - Dan Mei
- Department of General Surgery, Wuxi Hospital of Traditional Chinese Medicine, Wuxi 214000, China
| | - Honggang Gu
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| | - Jingzhe Zhang
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| |
Collapse
|
10
|
Grabowska M, Wawrzyniak D, Rolle K, Chomczyński P, Oziewicz S, Jurga S, Barciszewski J. Let food be your medicine: nutraceutical properties of lycopene. Food Funct 2019; 10:3090-3102. [DOI: 10.1039/c9fo00580c] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we highlight research and clinical trials involving lycopene and its impact on human health.
Collapse
Affiliation(s)
- Małgorzata Grabowska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
| | - Dariusz Wawrzyniak
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
- Centre for Advanced Technology
- Adam Mickiewicz University
| | | | | | - Stefan Jurga
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
- NanoBioMedical Centre
- Adam Mickiewicz University
| |
Collapse
|
11
|
Du XF, Zhang LL, Zhang DZ, Yang L, Fan YY, Dong SP. Clinical significance of serum total oxidant/antioxidant status in patients with operable and advanced gastric cancer. Onco Targets Ther 2018; 11:6767-6775. [PMID: 30349309 PMCID: PMC6187998 DOI: 10.2147/ott.s153946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose Oxidative stress was significantly associated with the development of malignancies. The purpose of this study was to evaluate the significance of serum total oxidant/antioxidant status in operable advanced gastric cancer patients. Materials and methods A total of 284 patients who underwent curative resection for primary stage III gastric cancer were enrolled. Total oxidant status, total antioxidant status, and oxidative stress index (OSI) were evaluated within 24 hours before surgery, and compared with 120 healthy donors. The correlation between the OSI and survival outcome was analyzed by the Kaplan–Meier method with log-rank test and Cox’s regression methods, respectively. Results Mean OSI of gastric cancer patients was higher than healthy controls (1.41±0.96 vs 0.78±0.42, P<0.001). All patients were stratified into two groups using the optimal cutoff value (1.42) of OSI using a sensitivity of 94.1% and a specificity of 64.0% as optimal conditions from receiver operating curve analysis. Patients with an OSI ≥1.42 had poorer mean overall survival (45.6 vs 29.8 months, P=0.022) and mean recurrence-free survival (43.3 vs 28.1 months, P=0.011) than patients with an OSI <1.42 in univariate analysis, and OSI was also confirmed as an independent predictor for survival for gastric cancer in multivariate analysis (hazard ratio, 0.541; 95% CI: 0.127–1.102; P=0.01). Conclusion Preoperative OSI can be considered as an independent prognostic factor for operable and advanced gastric cancer.
Collapse
Affiliation(s)
- Xue-Fang Du
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China,
| | - Li-Li Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China,
| | - De-Zhong Zhang
- Gastrointestinal Surgery, The First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| | - Lu Yang
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China,
| | - Ying-Ying Fan
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China,
| | - Shu-Ping Dong
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China,
| |
Collapse
|
12
|
Huang QX, Ma J, Wang YS. Significance of preoperative ischemia- modified albumin in operable and advanced gastric cancer. Cancer Biomark 2018; 22:477-485. [PMID: 29843211 DOI: 10.3233/cbm-171090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Oxidative stress plays an important role in promoting proliferation and metastases of cancer, which can be represented by ischemia-modified albumin (IMA). The purpose of this study was to evaluate serum IMA level in patients with operable advanced gastric cancer and analyze its prognostic significance. MATERIALS AND METHODS A total of 274 patients with primary stage III gastric cancer underwent curative operation were enrolled in this study. Serum IMA level was measured within 24 hours before surgery, comparing with 112 healthy donors. The correlation between serum IMA level and survival outcome was analyzed by the Kaplan-Meier with Log-Rank test and Cox's regression methods, respectively. RESULTS Serum IMA level from gastric cancer was higher than healthy control (0.41 ± 0.12 VS 0.23 ± 0.08; P< 0.001). Finally, 173 and 181 patients out of all 274 patients studied had died and recurrent, respectively. All patients were stratified into two groups using the optimal cutoff value (0.45) of IMA level using a sensitivity of 92.5% and a specificity of 65.2% as optimal conditions from receiver operating curve analysis. Patients with a IMA ⩾ 0.45 had poorer mean overall survival (44.68 months VS 30.94 months, P= 0.010) and mean recurrence free survival (42.36 months VS 28.82 months, p= 0.01) than patients with a IMA < 0.45 in univariate analysis and IMA also been confirmed as independent predictor for survival for GC patients in multivariate analysis (OR, 0.731; 95% CI: 0.329-1.282; p= 0.023). CONCLUSIONS Serum IMA level can be considered as an independent prognostic factor for operable and advanced gastric cancer.
Collapse
Affiliation(s)
- Qing-Xing Huang
- From the Department of Digestive Surgery, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi, China.,From the Department of Digestive Surgery, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi, China
| | - Jun Ma
- From the Department of Digestive Surgery, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi, China.,From the Department of Digestive Surgery, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi, China
| | - Yu-Sheng Wang
- From the Digestive System Department, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi, China
| |
Collapse
|
13
|
Pan L, Yu L, Wang L, He J, Sun J, Wang X, Wang H, Bai Z, Feng H, Pei H. Inflammatory stimuli promote oxidative stress in pancreatic acinar cells via Toll-like receptor 4/nuclear factor-κB pathway. Int J Mol Med 2018; 42:3582-3590. [PMID: 30272284 DOI: 10.3892/ijmm.2018.3906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
The Toll‑like receptor 4/nuclear factor‑κB (TLR4/NF‑κB) pathway is vital to the pathogenesis of acute pancreatitis (AP). The aim of the present study was to identify the mechanism of the activation of the TLR4/NF‑κB signaling pathway in the viability of primary pancreatic cells. The cells were stimulated with lipopolysaccharide (LPS) for the activation of NF‑κB signaling. Next, the reactive oxygen species (ROS) level was evaluated by detecting the concentration of malondialdehyde and glutathione peroxidase. Cell viability was measured by Cell Counting Kit‑8 and MTT assays, while the percentage of apoptosis was detected by flow cytometry. Quantitative polymerase chain reaction was used to detect TLR4, B‑cell lymphoma 2 (Bcl2), Bcl2‑associated X protein (Bax) and phorbol‑12‑myristate‑13‑acetate‑induced protein 1 (PMAIP1) expression levels. Western blot assay was also conducted to detect TLR4 protein expression, while the activity of NF‑κB signaling was measured by determining the p65 and phosphorylated p65 protein levels. In addition, the effect of TLR4 overexpression or treatment with TLR4 antagonists in the presence of LPS stimulation was investigated. The results revealed that ROS levels were increased and cell viability was decreased in LPS‑stimulated pancreatic acinar cells. TLR4, Bax and PMAIP1 levels were increased, Bcl2 expression was decreased and NF‑κB signaling was activated in LPS‑stimulated pancreatic acinar cells. Furthermore, pancreatic cells with TLR4 overexpression exhibited increased ROS level and decreased viability. Finally, the effect caused by LPS stimulation was partially reversed by treatment of pancreatic acinar cells with TLR4 antagonists. In conclusion, the current study investigated a novel regulatory mechanism of the TLR4/NF‑κB pathway in LPS‑stimulated pancreatic cells, which may contribute to pancreatitis. The damage of these cells due to increased ROS levels was observed to occur through activation of the TLR4/NF‑κB pathway.
Collapse
Affiliation(s)
- Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lei Yu
- Department of Basic Medicine, Xi'an Medical College, Xi'an, Shaanxi 710021, P.R. China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Juntao He
- Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiangli Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaobo Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hai Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhenghai Bai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
14
|
Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y, Li YL, Lv XJ, Tian FY, Pan SH, Bai XW, Sun B. RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 2018; 9:952. [PMID: 30237496 PMCID: PMC6147947 DOI: 10.1038/s41419-018-0980-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Chronic pancreatitis (CP) is described as a progressive fibro-inflammatory disorder of the exocrine disease, which eventually leads to damage of the gland. Excessive activation of pancreatic stellate cells (PSCs) is a critical participant in the initiation of CP. Autophagy is involved in multiple degeneration and inflammation in acute pancreatitis and CP. In our study, we report that retinoblastoma coiled coil protein 1 (RB1CC1) expression and the autophagic level are elevated in activated PSCs. RB1CC1 is positively correlated with pancreatic fibrogenesis in tissues and plasma of CP patients. Knockdown of RB1CC1 restrains alpha smooth muscle actin (α-SMA) and collagen expressions, and autophagy in activated PSCs in vitro. Furthermore, we show that RB1CC1 induces PSC activation via binding to ULK1 promoter and the direct interaction with ULK1 protein. These suppress ULK1 expression and its kinase activity. In mice, knockdown of RB1CC1 blocks autophagy and then inhibits the pancreatic duct ligation-induced pancreatic fibrosis. Consequently, our study highlights that RB1CC1-mediated autophagy is a key event for the activation of PSCs. Inhibition of RB1CC1 alleviates autophagy, which plays a critical role in anti-fibrotic activation in PSCs and CP progression. RB1CC1 could be a novel strategy for the treatment of pancreatic fibrosis.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ji-Sheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-Quan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Ze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-Long Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin-Jian Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng-Yu Tian
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shang-Ha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue-Wei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
15
|
Suppression of inducible nitric oxide synthase and tumor necrosis factor-alpha level by lycopene is comparable to methylprednisolone in acute pancreatitis. Dig Liver Dis 2018; 50:601-607. [PMID: 29439880 DOI: 10.1016/j.dld.2018.01.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidative stress and inflammation may play a key role in the pathogenesis of acute pancreatitis (AP). Lycopene, a natural carotenoid, has antioxidant scavenger capacity and inhibits inflammation in many experimental models. AIM The study was designed to investigate whether lycopene can ameliorate l-arginine-induced pancreatitis in rats and to elucidate the underlying molecular mechanisms of these effects. METHODS Forty-eight adult male Wistar rats were divided into: control group (vehicle, orally, 10 days), AP group (3 g/kg l-arginine, single i.p. injection, on day 10th of the experiment), lycopene group (50 mg/kg) and methylprednisolone group (30 mg/kg). Lycopene and methylprednisolone were given orally, once daily for 10 days prior to l-arginine injection. Rats were sacrificed 24 h after l-arginine injection. Inflammation/oxidative stress and pancreatic markers were assessed. Pancreatic histopathological studies were done. RESULTS Lycopene group showed a significant reduction in tumor necrosis factor alpha (TNF-α), myeloperoxidase activity, and down-regulation of inducible nitric oxide synthase (iNOS) gene expression. Pancreatic nitric oxide concentration was reduced and pancreatic GSH was increased in lycopene group. Serum α-amylase and lipase activities were reduced by lycopene treatment. The histology of pancreas was improved in lycopene group as well as methylprednisolone group. CONCLUSION Lycopene prior treatment proved anti-inflammatory and antioxidant effects against AP rat model via different mechanisms.
Collapse
|
16
|
Tang JH, Jiang R. Nursing care of elderly patients with drug-induced severe pancreatitis by continuous closed high flow peritoneal lavage combined with continuous blood purification. Shijie Huaren Xiaohua Zazhi 2018; 26:849-855. [DOI: 10.11569/wcjd.v26.i14.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the nursing effect of closed high-flow peritoneal lavage combined with continuous blood purification in elderly patients with drug-induced severe pancreatitis.
METHODS A total of 50 elderly patients with drug-induced severe acute pancreatitis who received continuous closed high flow peritoneal lavage combined with blood purification between January 2017 and January 2018 at our emergency internal medicine department were enrolled as an experimental group. Fifty elderly patients with drug-induced severe pancreatitis who received basic nursing measures only were included as a control group. The average frequency of complications, number of treatment cycles, number of cycles required for serum amylase recovery, and duration of abdominal pain in the two groups were statistically analyzed. The changes of liver and kidney function, APACHE Ⅱ, and CTSI score were also recorded and compared.
RESULTS The average frequency of complications, number of treatment cycles, number of cycles required for serum amylase recovery, and duration of abdominal pain were significantly lower in the experimental group than in the control group (P < 0.05). The liver and kidney function of the patients in the experimental group were obviously superior to those before treatment (P < 0.05), while the difference in the control group did not reach statistical significance. The APACHE Ⅱ and CTSI scores in the experimental group were significantly lower than those in the control group (P < 0.05).
CONCLUSION Continuous closed high-flow peritoneal lavage combined with blood purification can effectively reduce symptoms, shorten the treatment cycle, and improve prognosis in elderly patients with drug-induced severe acute pancreatitis.
Collapse
Affiliation(s)
- Jian-Hong Tang
- the Third Ward of the Inpatient Department, Changxing County Hospital, Huzhou 313100, Zhejiang Province, China
| | - Rui Jiang
- Blood Purification Center, Huzhou Central Hospital, Huzhou 313100, Zhejiang Province, China
| |
Collapse
|
17
|
Wang N, Zhang F, Yang L, Zou J, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K. Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int J Mol Med 2017; 40:427-437. [PMID: 28586010 PMCID: PMC5504992 DOI: 10.3892/ijmm.2017.3012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
Acute necrotizing pancreatitis (ANP) is a common severe critical illness with a high mortality rate. Resveratrol, a polyphenol compound derived from various plants such as grape skin, peanut, berry and veratrum, exhibits multiple biological activities, especially potent anti‑inflammatory activity, but its effect on ANP has not yet been fully elucidated. The present study aimed to investigate the effects of resveratrol on L-arginine-induced ANP and the possible mechanisms. A mouse model of ANP was established by 2 hourly intraperitoneal injections of 8% L-arginine (4 g/kg). Then the mice were treated by intragastric administration of resveratrol (80 mg/kg) every 12 h immediately after the second injection of L-arginine. Mice with ANP showed increased apoptosis of pancreatic acinar cells, pancreatic myeloperoxidase activity, serum lactate dehydrogenase activity, amylase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) levels as well as decreased serum IL-10 level, pancreatic expression of heat shock factor 1 (HSF1), sirtuin 1 (SIRT1) and p53, but the ratio of acetylated HSF1 and p53 was markedly increased. Resveratrol enhanced the survival rate of mice with ANP from 47.8 to 71.4% and obviously restored the changes in mice with ANP as mentioned above. Additionally, interactions between SIRT1 and p53 and between SIRT1 and HSF1 in the pancreas of the mice were confirmed by co-immunoprecipitation. These data suggest that resveratrol protects against L-arginine-induced ANP, which may be related to the enhancement of SIRT1-mediated deacetylation of p53 and HSF1.
Collapse
Affiliation(s)
- Nian Wang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Fen Zhang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Liu Yang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jiang Zou
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hao Wang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Meidong Liu
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xianzhong Xiao
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Kangkai Wang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
18
|
Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X, Pan S, Xue D, Wang G, Sun B. Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 2016; 20:2349-2361. [PMID: 27419805 PMCID: PMC5134374 DOI: 10.1111/jcmm.12928] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023] Open
Abstract
Previously, we have shown that hydrogen sulphide (H2 S) might be pro-inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2 S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2 S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL-propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre-mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2 S exerted on the impaired autophagy during AP was further attributed to over-activation of autophagy rather than hampered autophagosome-lysosome fusion. To elucidate the molecular mechanism that underlies H2 S-mediated over-activation of autophagy during AP, we evaluated phosphorylations of AMP-activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC-51-Like kinase 1 (ULK1). Our findings suggested that H2 S exacerbated taurocholate-induced AP by over-activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2 S to restore over-activated autophagy might be a promising therapeutic approach against AP-related injuries.
Collapse
Affiliation(s)
- Liang Ji
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fengzhi Qu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuewei Bai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Li L, Chen H, Gao Y, Wang YW, Zhang GQ, Pan SH, Ji L, Kong R, Wang G, Jia YH, Bai XW, Sun B. Long Noncoding RNA MALAT1 Promotes Aggressive Pancreatic Cancer Proliferation and Metastasis via the Stimulation of Autophagy. Mol Cancer Ther 2016; 15:2232-43. [PMID: 27371730 DOI: 10.1158/1535-7163.mct-16-0008] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/04/2016] [Indexed: 11/16/2022]
Abstract
Recently, pancreatic ductal adenocarcinoma (PDAC) has emerged as one of the most aggressive malignant tumors with the worst prognosis. Previous studies have demonstrated that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is increased in pancreatic cancer and is identified as a diagnostic biomarker. Nonetheless, the molecular mechanism of elevated MALAT1 levels and tumor aggressiveness remains unknown. In this study, MALAT1 was found to be highly expressed in PDAC tissues, and elevated expression was associated with poorer prognoses. In addition, MALAT1 was positively linearly correlated with the expression of LC3B mRNA. Furthermore, several molecules involved in cellular autophagic flux were modulated following the downregulation of MALAT1, including LC3, P62, and LAMP-2. Mechanistically, we found that MALAT1 interacted with RNA binding protein HuR, and silencing of MALAT1 greatly enhanced the posttranscriptional regulation of TIA-1 and had further effects on inhibiting autophagy. MALAT1 was speculated to regulate tumorigenesis via HuR-TIA-1-mediated autophagic activation. Hence, we investigated the biological properties of MALAT1 in terms of tumor proliferation and metastasis by promoting autophagy in vitro In brief, these data demonstrate that MALAT1 could facilitate the advanced progression of tumors in vivo Our study highlights the new roles of MALAT1 on protumorigenic functioning and anticancer therapy via activating autophagy in pancreatic cancer. Mol Cancer Ther; 15(9); 2232-43. ©2016 AACR.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Gao
- Department of General Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Yong-Wei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-Quan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shang-Ha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Ji
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue-Hui Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xue-Wei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
20
|
Wang YR, Tian FL, Yan MX, Fan JH, Wang LY, Kuang RG, Li YQ. Sulfasalazine inhibits inflammation and fibrogenesis in pancreas via NF-κB signaling pathway in rats with oxidative stress-induced pancreatic injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1743-51. [PMID: 27307705 PMCID: PMC4887069 DOI: 10.2147/dddt.s107679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pathogenesis and effective therapeutics of chronic pancreatic inflammation and fibrosis remain uncertain. PURPOSE To investigate the effects of sulfasalazine (SF) on pancreatic inflammation and fibrogenesis. METHODS Chronic pancreatic injury in rats was induced by diethyldithiocarbamate (DDC) and interfered by SF through intraperitoneal injection. The rats were divided into five groups: group N, normal control group, rats were treated with dilated water only; group DS1, rats received SF (10 mg/kg) 2 hours before DDC treatment; group DS2, rats were treated with DDC and then SF (100 mg/kg, twice a week); group DS3, rats were treated with DDC, then SF (100 mg/kg, thrice a week); and group DDC, rats were treated with DDC only. Pancreatic inflammation and fibrosis were determined by hematoxylin and eosin staining and Sirius red staining. The genes and proteins related to NF-κB pathway and fibrogenesis including NF-κB/p65, TNF-α, ICAM-1, α-SMA, and Con 1 were detected by immunohistochemical staining, reverse transcription polymerase chain reaction, and Western blotting. RESULTS Rats in the DDC and DS1 groups showed the highest histological scores after DDC treatment, but the scores of DS2 and DS3 groups decreased significantly when compared with the DDC group. Sirius red staining showed collagen formation clearly in DDC and DS1 rats rather than in DS2 and DS3 rats. NF-κB/p65, ICAM-1, and α-SMA were strongly expressed in DDC and DS1 rats, while DS2 and DS3 rats showed mild to moderate expression by immunohistochemistry. Reverse transcription polymerase chain reaction showed increased levels of NF-κB/p65, ICAM-1, TNF-α, α-SMA, and Con 1 mRNA in DDC and DS1 rats in comparison to normal controls. The mRNA levels of these molecules in DS2 and DS3 rats were significantly lower than those in DS1 and DDC rats. Western blotting demonstrated that the NF-κB/p65, ICAM-1, and α-SMA expressions in pancreatic tissues of the rats of the DDC group were more clear than those of the normal control, DS2, and DS3 rats. CONCLUSION SF inhibits pancreatic inflammation and fibrogenesis via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ya-Ru Wang
- Department of Gastroenterology, Shandong Qianfoshan Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| | - Fei-Long Tian
- Shandong University School of Medicine, Qilu Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| | - Ming-Xian Yan
- Department of Gastroenterology, Shandong Qianfoshan Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| | - Jin-Hua Fan
- Department of Gastroenterology, Shandong Qianfoshan Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| | - Li-Yun Wang
- Department of Gastroenterology, Shandong Qianfoshan Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| | - Rong-Guang Kuang
- Department of Gastroenterology, Shandong Qianfoshan Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
21
|
Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 on L-Arginine-Induced Acute Pancreatitis in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5818479. [PMID: 27190575 PMCID: PMC4844882 DOI: 10.1155/2016/5818479] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/22/2016] [Indexed: 01/12/2023]
Abstract
This study was aimed at evaluating the protective effect of coenzyme Q10 on L-arginine-induced acute pancreatitis in rats regarding biomarkers and morphologic changes. Thirty-two male Sprague-Dawley rats were divided into 4 equal groups. Control group received intraperitoneal normal saline, while in sham and experimental groups 1 and 2 pancreatitis was induced with L-arginine. E1 and E2 groups were treated with a single dose of 100 and 200 mg/kg Q10, respectively. Serum lipase and amylase, along with pancreas IL-10, IL-1β, and TNF-α, were measured. For evaluation of oxidative stress, pancreatic superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) were assessed. Histopathological examination for morphologic investigation was conducted. Serum amylase and lipase, as well as TNF-α and IL-1β cytokines, reverted with administration of Q10 in consistence with dosage. In contrast, Q10 assisted in boosting of IL-10 with higher dosage (200 mg/kg). A similar pattern for oxidative stress markers was noticed. Both MDA and MPO levels declined with increased dosage, contrary to elevation of SOD and GSH. Histopathology was in favor of protective effects of Q10. Our findings proved the amelioration of pancreatic injury by Q10, which suggest the anti-inflammatory and antioxidant property of Q10 and its potential therapeutic role.
Collapse
|
22
|
Feng C, Luo T, Zhang S, Liu K, Zhang Y, Luo Y, Ge P. Lycopene protects human SH‑SY5Y neuroblastoma cells against hydrogen peroxide‑induced death via inhibition of oxidative stress and mitochondria‑associated apoptotic pathways. Mol Med Rep 2016; 13:4205-14. [PMID: 27035331 PMCID: PMC4838073 DOI: 10.3892/mmr.2016.5056] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/14/2016] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death.
Collapse
Affiliation(s)
- Chunsheng Feng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianfei Luo
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuyan Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanhong Zhang
- Department of Emergent Medicine, People's Hospital of Jilin Province, Changchun, Jilin 130021, P.R. China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
LEI XIAOFENG, LEI LIJIAN, ZHANG ZHELIN, CHENG YAN. Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemia-reperfusion in rats: The role of the Nrf2/HO-1 signaling pathway. Mol Med Rep 2015; 13:412-8. [DOI: 10.3892/mmr.2015.4534] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/09/2015] [Indexed: 11/06/2022] Open
|