1
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Mol M, Degani G, Coppa C, Baron G, Popolo L, Carini M, Aldini G, Vistoli G, Altomare A. Advanced lipoxidation end products (ALEs) as RAGE binders: Mass spectrometric and computational studies to explain the reasons why. Redox Biol 2018; 23:101083. [PMID: 30598328 PMCID: PMC6859533 DOI: 10.1016/j.redox.2018.101083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/27/2022] Open
Abstract
Advanced Lipoxidation End-products (ALEs) are modified proteins that can act as pathogenic factors in several chronic diseases. Several molecular mechanisms have so far been considered to explain the damaging action of ALEs and among these a pathway involving the receptor for advanced glycation end products (RAGE) should be considered. The aim of the present work is to understand if ALEs formed from lipid peroxidation derived reactive carbonyl species (RCS) are able to act as RAGE binders and also to gain a deeper insight into the molecular mechanisms involved in the protein-protein engagement. ALEs were produced in vitro, by incubating human serum albumin (HSA) with 4-hydroxy-trans− 2-nonenal (HNE), acrolein (ACR) and malondialdehyde (MDA). The identification of ALEs was performed by MS. ALEs were then subjected to the VC1 Pull-Down assay (VC1 is the ligand binding domain of RAGE) and the enrichment factor (the difference between the relative abundance in the enriched sample minus the amount in the untreated one) as an index of affinity, was determined. Computation studies were then carried out to explain the factors governing the affinity of the adducted moieties and the site of interaction on adducted HSA for VC1-binding. The in silico analyses revealed the key role played by those adducts which strongly reduce the basicity of the modified residues and thus occur at their neutral state at physiological conditions (e.g. the MDA adducts, dihydropyridine-Lysine (DHPK) and N-2-pyrimidyl-ornithine (NPO), and acrolein derivatives, N-(3-formyl-3,4-dehydro-piperidinyl) lysine, FDPK). These neutral adducts become unable to stabilize ion-pairs with the surrounding negative residues which thus can contact the RAGE positive residues. In conclusion, ALEs derived from lipid peroxidation-RCS are binders of RAGE and this affinity depends on the effect of the adduct moiety to reduce the basicity of the target amino acid and on the acid moieties surrounding the aminoacidic target. A wide set of ALEs-HSA was obtained by in vitro incubation of HSA with different RCS. ALEs-HSA before and after VC1 enrichment were fully characterized by MS. Retention efficiency of the identified ALEs-HSA by VC1 was determined. Elucidation of structural requirements making an ALE a RAGE binder was obtained by computational studies. The mechanism here proposed for ALEs can be considered as a general mechanism of protein-protein interaction.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy
| | - Genny Degani
- Department of Biosciences, Via Celoria 26, Università degli Studi di Milano, 20133 Milano, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy
| | - Laura Popolo
- Department of Biosciences, Via Celoria 26, Università degli Studi di Milano, 20133 Milano, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
3
|
Sousa BC, Pitt AR, Spickett CM. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic Biol Med 2017; 111:294-308. [PMID: 28192230 DOI: 10.1016/j.freeradbiomed.2017.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,β-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon neuroketals. Non-radical oxidation by hypochlorous acid can generate α-chlorofatty aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have generally been considered as toxic products of a deleterious process. The reactivity is especially high for the α,β-unsaturated alkenals, such as acrolein and crotonaldehyde, and for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best known. Nevertheless, in recent years several previously neglected aldehydes have been investigated and also found to have significant reactivity and biological effects; notable examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial interest in the biological effects of all of these lipid oxidation products and their roles in disease, including proposals that HNE is a second messenger or signalling molecule. However, it is becoming clear that many of the effects elicited by these compounds relate to their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific phospholipids. This emphasizes the need for good analytical methods, not just for free lipid oxidation products but also for the resulting adducts with biomolecules. The most informative methods are those utilizing HPLC separations and mass spectrometry, although analysis of the wide variety of possible adducts is very challenging. Nevertheless, evidence for the occurrence of lipid-derived aldehyde adducts in biological and clinical samples is building, and offers an exciting area of future research.
Collapse
Affiliation(s)
- Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
4
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Signal and regulatory effects of methylglyoxal in eukaryotic cells (review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817030103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Grasso G, Axelsen PH. Effects of covalent modification by 4-hydroxy-2-nonenal on the noncovalent oligomerization of ubiquitin. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:36-42. [PMID: 27862610 PMCID: PMC5360464 DOI: 10.1002/jms.3897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
When lipid membranes containing ω-6 polyunsaturated fatty acyl chains are subjected to oxidative stress, one of the reaction products is 4-hydroxy-2-nonenal (HNE)-a chemically reactive short chain alkenal that can covalently modify proteins. The ubiquitin proteasome system is involved in the clearing of proteins modified by oxidation products such as HNE, but the chemical structure, stability and function of ubiquitin may be impaired by HNE modification. To evaluate this possibility, the susceptibility of ubiquitin to modification by HNE has been characterized over a range of concentrations where ubiquitin forms non-covalent oligomers. Results indicate that HNE modifies ubiquitin at only two of the many possible sites, and that HNE modification at these two sites alters the ubiquitin oligomerization equilibrium. These results suggest that any role ubiquitin may have in clearing proteins damaged by oxidative stress may itself be impaired by oxidative lipid degradation products. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giuseppe Grasso
- University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Degani G, Altomare AA, Colzani M, Martino C, Mazzolari A, Fritz G, Vistoli G, Popolo L, Aldini G. A capture method based on the VC1 domain reveals new binding properties of the human receptor for advanced glycation end products (RAGE). Redox Biol 2016; 11:275-285. [PMID: 28013188 PMCID: PMC5198869 DOI: 10.1016/j.redox.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/16/2016] [Indexed: 12/23/2022] Open
Abstract
The Advanced Glycation and Lipoxidation End products (AGEs and ALEs) are a heterogeneous class of compounds derived from the non-enzymatic glycation or protein adduction by lipoxidation break-down products. The receptor for AGEs (RAGE) is involved in the progression of chronic diseases based on persistent inflammatory state and oxidative stress. RAGE is a pattern recognition receptor (PRR) and the inhibition of the interaction with its ligands or of the ligand accumulation have a potential therapeutic effect. The N-terminal domain of RAGE, the V domain, is the major site of AGEs binding and is stabilized by the adjacent C1 domain. In this study, we set up an affinity assay relying on the extremely specific biological interaction AGEs ligands have for the VC1 domain. A glycosylated form of VC1, produced in the yeast Pichia pastoris, was attached to magnetic beads and used as insoluble affinity matrix (VC1-resin). The VC1 interaction assay was employed to isolate specific VC1 binding partners from in vitro generated AGE-albumins and modifications were identified/localized by mass spectrometry analysis. Interestingly, this method also led to the isolation of ALEs produced by malondialdehyde treatment of albumins. Computational studies provided a rational-based interpretation of the contacts established by specific modified residues and amino acids of the V domain. The validation of VC1-resin in capturing AGE-albumins from complex biological mixtures such as plasma and milk, may lead to the identification of new RAGE ligands potentially involved in pro-inflammatory and pro-fibrotic responses, independently of their structures or physical properties, and without the use of any covalent derivatization process. In addition, the method can be applied to the identification of antagonists of RAGE-ligand interaction. A new VC1 interaction affinity assay was validated using model AGE-albumins. In vitro modifications of the interacting partners were identified/localized by MS. The VC1-pull down assays captures AGE-albumins in simulated complex mixtures ALEs produced by malondialdehyde treatment were mapped in VC1-interacting albumins. The molecular interactions of MDA-induced adduct-VC1 complexes were rationalized.
Collapse
Affiliation(s)
- Genny Degani
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milano, Italy; Department of Pharmaceutical Sciences, Via Mangiagalli 25, 20133 Milano, Italy.
| | | | - Mara Colzani
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, 20133 Milano, Italy.
| | - Caterina Martino
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milano, Italy.
| | - Angelica Mazzolari
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, 20133 Milano, Italy.
| | - Guenter Fritz
- University of Freiburg, Institute of Neuropathology Neurozentrum, Breisacher Straße 64, 79106 Freiburg, Germany.
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, 20133 Milano, Italy.
| | - Laura Popolo
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milano, Italy.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, 20133 Milano, Italy.
| |
Collapse
|
7
|
Computational approaches in the rational design of improved carbonyl quenchers: focus on histidine containing dipeptides. Future Med Chem 2016; 8:1721-37. [PMID: 27584013 DOI: 10.4155/fmc-2016-0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The inhibition of protein carbonylation can play therapeutic roles in several oxidative-based diseases and direct carbonyl quenching appears the most effective inhibition strategies. l-carnosine derivatives are effective and selective quenchers toward 4-hydroxy-2-nonenal even though their activity was never investigated in a fully comparable way. RESULTS The reported results revealed that anserine, homocarnosine and carnosinamide retain a remarkable quenching activity combined with a satisfactory selectivity. In silico analyses confirmed the key role of flexibility, lipophilicity and nucleophilicity parameters in rationalizing the measured reactivity. CONCLUSION This study confirms that in silico approaches can be successfully used in the rational design of improved carbonyl quenchers. Physicochemical and stereoelectronic descriptors appear really informative especially when explored by their corresponding property spaces.
Collapse
|
8
|
Colzani M, De Maddis D, Casali G, Carini M, Vistoli G, Aldini G. Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study. ChemMedChem 2016; 11:1778-89. [DOI: 10.1002/cmdc.201500552] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Mara Colzani
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Gaia Casali
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| |
Collapse
|