1
|
Zhao P, Liu X, Feng L, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Yang J, Zhou XQ. New perspective on mechanism in muscle toxicity of ochratoxin A: Model of juvenile grass carp (Ctenopharyngodon idella). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106701. [PMID: 37776711 DOI: 10.1016/j.aquatox.2023.106701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Ochratoxin A (OTA) is a common fungal toxin that pollutes raw materials of aquatic feeds (such as corn, soybean meal, and wheat). This study explored the effects of OTA through diet on muscle toxicity in juvenile grass carp (Ctenopharyngodon idella). The following results were obtained for the muscle. (1) With an increase in dietary OTA, the residue of OTA in muscle increased, muscle fiber diameter and density decreased, and even muscle fiber breakage. (2) OTA caused oxidative stress by downregulating GPx1 (a, b) and Trx via inhibited the PGC1-α/Nrf2 signaling pathway. (3) OTA exacerbated endoplasmic reticulum stress in the muscle by causing endoplasmic reticulum expansion (results of transmission electron microscopy) and upregulating the expression of GRP78, eIF2α, ATF6, PERK, and CHOP. (4) OTA reduced muscle fiber diameter by inhibiting protein synthesis (AKT, TOR, and S6K1) and promoting the mRNA expression of protein degradation-related genes (MURF1, MAFBX, and FoxO3a), as well as by reducing AKT and promoting the immunofluorescence expression of FoxO3. (5) OTA inhibits collagen deposition by downregulating TGF-β1, TGF-βR1, Smad2, Smad3, Smad4, CTGF, TIMP, PHD, and LOX mRNA expressions as well as the CTGF immunofluorescence expression. Moreover, based on the GSH and collagen content contents, the upper safe dose for OTA-induced toxicity was 963.6 and 1129.6 μg/kg diet, respectively. Using the example of OTA, our research has provided new insights that raise concerns about the quality of aquatic products by exploring muscle toxicity caused by mycotoxins.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Juan Yang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China.
| |
Collapse
|
2
|
YILDIZ H. Effects of glutathione on mitochondrial DNA and antioxidant enzyme activities in Drosophila melanogaster. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1084592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The free radical theory in aging assumes that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. The intake of nutritional antioxidants can prevent this damage by neutralizing reactive oxygen derivatives. Glutathione (GSH; en-L-Glutamyl-L-cysteinyl glycine) is the lowest molecular weight thiol in the cells and as a cofactor of many enzymes and a potent antioxidant plays an important role in maintaining normal cell functions by destroying toxic oxygen radicals. In this study, the effects of GSH on SOD, GST and catalase enzymes and mtDNA damage were investigated at various time intervals by giving reduced glutathione to Drosophila. It was observed that 3-week GSH administration did not have a statistically significant effect on SOD and GST activities whereas GSH application decreased the catalase enzyme activities significantly. Although the decrease in antioxidant capacity with age was observed in SOD and catalase enzymes, such a situation was not observed in GST enzyme activities. There was no statistically significant difference between the control and GSH groups in mtDNA copy number values, while in the GSH group, oxidative mtDNA damage was high. These results may be due to the prooxidant effect of GSH at the dose used in this study.
Collapse
|
3
|
Peng W, Bao Q, Jia R, He P. Construction of an easily detectable transgenic Synechococcus elongatus PCC 7942 against White Spot Syndrome Virus using vp28 and mOrange Gene and its metabolism in shrimp. Front Immunol 2022; 13:974014. [PMID: 36091009 PMCID: PMC9459150 DOI: 10.3389/fimmu.2022.974014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
White spot syndrome is an epidemic disease caused by the highly contagious and lethal white spot syndrome virus (WSSV), resulting in huge economic losses to the global aquaculture industry. VP28 is the main structural protein in the capsule of WSSV and is important in the early stage of infection. Under an excitation wavelength of 548 nm, the mOrange fluorescent protein releases a 562 nm emission wavelength, which is different from the autofluorescence of cyanobacteria. Therefore, using this characteristic combined with the receptor system of Synechococcus elongatus PCC 7942, we constructed transgenic S. elongatus to express the recombinant protein VP28-mOrange. In addition, PCR and western blotting were used to confirm the stable expression of the target gene in cyanobacteria. Using mOrange tracer features, we explored the recombinant protein VP28-mOrange in the metabolic cycle of young Litopenaeus Vannamei after feeding. After the young shrimp had stopped consuming transgenic cyanobacteria, the 24 to 33 h fluorescence signal in the intestine was very weak, and almost disappeared after 36 h. We explored the protective effect of transgenic vp28-mOrange S. elongatus within 48 h of being ingested by L. vannamei and set WSSV challenges at 2, 12, 24, and 48 h post-immunization. However, the survival rate of L. vannamei decreased as the time of the WSSV challenge increased. The survival rate on the seventh day was 81%, 52%, 45.5%, and 33.3% for shrimps challenged for 2, 12, 24, and 48 h, respectively. Enzyme activity can also support this conjecture, the enzyme activity indexes of the experimental groups were significantly reduced compared to positive and wild-type controls. Therefore, this immune agent functioned as a preventive agent. Compared with the traditional method, this method was easy to detect and can visualize the digestion of transgenic cyanobacteria in the Litopenaeus vannamei intestine.
Collapse
Affiliation(s)
| | | | - Rui Jia
- *Correspondence: Rui Jia, ; Peimin He,
| | - Peimin He
- *Correspondence: Rui Jia, ; Peimin He,
| |
Collapse
|
4
|
St John JC. Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism, Development, and Disease. Annu Rev Anim Biosci 2021; 9:203-224. [PMID: 33592161 DOI: 10.1146/annurev-animal-080520-083353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Collapse
Affiliation(s)
- Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia;
| |
Collapse
|
5
|
Breedon SA, Hadj-Moussa H, Storey KB. Nrf2 activates antioxidant enzymes in the anoxia-tolerant red-eared slider turtle, Trachemys scripta elegans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:426-435. [PMID: 33773070 DOI: 10.1002/jez.2458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022]
Abstract
The freshwater red-eared slider turtle, Trachemys scripta elegans, experiences weeks to months of anoxia at the bottom of ice-locked bodies of water in the winter. While this introduces anoxia-reoxygenation cycles similar to the ischemia-reperfusion events that mammals experience, T. s. elegans does not suffer any apparent tissue damage. To survive prolonged anoxia and prevent cellular damage associated with reactive oxygen species, these turtles have developed numerous adaptions, including highly effective antioxidant defenses. Herein, we examined the subcellular localization and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), a central transcription factor responsible for modulating cellular antioxidant responses, that was found to be upregulated and localized to the nucleus in anoxic turtles. Additionally, we examined protein levels of glutathione S-transferases (GSTs) and manganese superoxide dismutase (MnSOD) antioxidant enzymes in anoxic liver, kidney, heart, and skeletal muscle tissues. MnSOD levels were significantly higher in heart and muscle during anoxia, and the four GST isozymes (GSTK1, GSTT1, GSTP1, and GSTM3) were elevated in a tissue-specific manner during anoxia and/or aerobic recovery. Together, these results indicate that Nrf2 is likely involved in activating downstream antioxidant genes in response to anoxic stress. These results provide a possible Nrf2-mediated transcriptional mechanism that supports existing findings of enhanced antioxidant defenses that allow T. s. elegans to cope with anoxia-reoxygenation cycles, and subsequent oxidative stress.
Collapse
Affiliation(s)
- Sarah A Breedon
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Hanane Hadj-Moussa
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Alaidaroos NYA, Alraies A, Waddington RJ, Sloan AJ, Moseley R. Differential SOD2 and GSTZ1 profiles contribute to contrasting dental pulp stem cell susceptibilities to oxidative damage and premature senescence. Stem Cell Res Ther 2021; 12:142. [PMID: 33596998 PMCID: PMC7890809 DOI: 10.1186/s13287-021-02209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Dental pulp stem cells (DPSCs) are increasingly being advocated as viable cell sources for regenerative medicine-based therapies. However, significant heterogeneity in DPSC expansion and multi-potency capabilities are well-established, attributed to contrasting telomere profiles and susceptibilities to replicative senescence. As DPSCs possess negligible human telomerase (hTERT) expression, we examined whether intrinsic differences in the susceptibilities of DPSC sub-populations to oxidative stress-induced biomolecular damage and premature senescence further contributed to this heterogeneity, via differential enzymic antioxidant capabilities between DPSCs. Methods DPSCs were isolated from human third molars by differential fibronectin adhesion, and positive mesenchymal (CD73/CD90/CD105) and negative hematopoietic (CD45) stem cell marker expression confirmed. Isolated sub-populations were expanded in H2O2 (0–200 μM) and established as high or low proliferative DPSCs, based on population doublings (PDs) and senescence (telomere lengths, SA-β-galactosidase, p53/p16INK4a/p21waf1/hTERT) marker detection. The impact of DPSC expansion on mesenchymal, embryonic, and neural crest marker expression was assessed, as were the susceptibilities of high and low proliferative DPSCs to oxidative DNA and protein damage by immunocytochemistry. Expression profiles for superoxide dismutases (SODs), catalase, and glutathione-related antioxidants were further compared between DPSC sub-populations by qRT-PCR, Western blotting and activity assays. Results High proliferative DPSCs underwent > 80PDs in culture and resisted H2O2−induced senescence (50–76PDs). In contrast, low proliferative sub-populations exhibited accelerated senescence (4–32PDs), even in untreated controls (11-34PDs). While telomere lengths were largely unaffected, certain stem cell marker expression declined with H2O2 treatment and expansion. Elevated senescence susceptibilities in low proliferative DPSC (2–10PDs) were accompanied by increased oxidative damage, absent in high proliferative DPSCs until 45–60PDs. Increased SOD2/glutathione S-transferase ζ1 (GSTZ1) expression and SOD activities were identified in high proliferative DPSCs (10–25PDs), which declined during expansion. Low proliferative DPSCs (2–10PDs) exhibited inferior SOD, catalase and glutathione-related antioxidant expression/activities. Conclusions Significant variations exist in the susceptibilities of DPSC sub-populations to oxidative damage and premature senescence, contributed to by differential SOD2 and GSTZ1 profiles which maintain senescence-resistance/stemness properties in high proliferative DPSCs. Identification of superior antioxidant properties in high proliferative DPSCs enhances our understanding of DPSC biology and senescence, which may be exploited for selective sub-population screening/isolation from dental pulp tissues for regenerative medicine-based applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02209-9.
Collapse
Affiliation(s)
- Nadia Y A Alaidaroos
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Amr Alraies
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Rachel J Waddington
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Alastair J Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Ryan Moseley
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| |
Collapse
|
7
|
Abstract
BACKGROUND Kawasaki disease is a type of acute febrile rash disease that is common in children and is characterised by primary lesions of systemic middle and small vasculitis, which can lead to coronary artery lesions. Manganese superoxide dismutase (MnSOD), one of the most important antioxidases in the human body, plays a key role in maintaining the balance of free radicals in the human body. Two single-nucleotide polymorphisms (SNPS) (rs4880 and rs5746136) in the MnSOD gene were related to oxidative stress disease. The purpose of this study is to explore the possible relationship between MnSOD gene polymorphisms and Kawasaki disease susceptibility. METHODS This study included 100 Kawasaki disease children and 102 healthy children. Two single-nucleotide polymorphisms (rs4880 and rs5746136) were detected by polymerase chain reaction sequence-based typing. RESULTS There was a significant difference in both the genotype frequency (χ2 = 10.805, p = 0.005) and the allele frequency (χ2 = 7.948, p = 0.005) of rs5746136 between the Kawasaki disease group and the control group. Children with the A allele had a 0.558 times lower risk of Kawasaki disease than those without the A allele (χ2 = 7.948, p = 0.005, odds ratio = 0.558, 95% confidence interval = 0.371-0.838). There was no significant difference in the genotype and gene frequencies of rs5746136 between the Kawasaki disease-coronary artery lesion and Kawasaki disease-without coronary artery lesion groups (p > 0.05), and there was no significant difference in the rs4880 genotype and allele frequencies between the Kawasaki disease and healthy control groups or between the Kawasaki disease-coronary artery lesion and Kawasaki disease-without coronary artery lesions groups (p > 0.05). CONCLUSION This study provides evidence supporting an association between MnSOD gene polymorphisms and susceptibility to Kawasaki disease. The genotype AA and the allele A of the MnSOD gene locus rs5746136 were risk factors for Kawasaki disease.
Collapse
|
8
|
MnDPDP: Contrast Agent for Imaging and Protection of Viable Tissue. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:3262835. [PMID: 32994754 PMCID: PMC7501573 DOI: 10.1155/2020/3262835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023]
Abstract
The semistable chelate manganese (Mn) dipyridoxyl diphosphate (MnDPDP, mangafodipir), previously used as an intravenous (i.v.) contrast agent (Teslascan™, GE Healthcare) for Mn-ion-enhanced MRI (MEMRI), should be reappraised for clinical use but now as a diagnostic drug with cytoprotective properties. Approved for imaging of the liver and pancreas, MnDPDP enhances contrast also in other targets such as the heart, kidney, glandular tissue, and potentially retina and brain. Transmetallation releases paramagnetic Mn2+ for cellular uptake in competition with calcium (Ca2+), and intracellular (IC) macromolecular Mn2+ adducts lower myocardial T1 to midway between native values and values obtained with gadolinium (Gd3+). What is essential is that T1 mapping and, to a lesser degree, T1 weighted imaging enable quantification of viability at a cellular or even molecular level. IC Mn2+ retention for hours provides delayed imaging as another advantage. Examples in humans include quantitative imaging of cardiomyocyte remodeling and of Ca2+ channel activity, capabilities beyond the scope of Gd3+ based or native MRI. In addition, MnDPDP and the metabolite Mn dipyridoxyl diethyl-diamine (MnPLED) act as catalytic antioxidants enabling prevention and treatment of oxidative stress caused by tissue injury and inflammation. Tested applications in humans include protection of normal cells during chemotherapy of cancer and, potentially, of ischemic tissues during reperfusion. Theragnostic use combining therapy with delayed imaging remains to be explored. This review updates MnDPDP and its clinical potential with emphasis on the working mode of an exquisite chelate in the diagnosis of heart disease and in the treatment of oxidative stress.
Collapse
|
9
|
Xia SR, Wen XY, Fan XL, Chen XR, Wei ZW, Li QH, Sun L. Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress. Mol Med Rep 2020; 21:2633-2641. [PMID: 32323790 DOI: 10.3892/mmr.2020.11066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 03/12/2020] [Indexed: 11/06/2022] Open
Abstract
The PTEN induced putative kinase 1 (PINK1) mutation is the second most common cause of autosomal recessive adolescent Parkinson's disease (PD). Furthermore, mitochondrial disorders and oxidative stress are important mechanisms in the pathogenesis of PD. Numerous members of the Wnt family have been found to be associated with neurodegenerative diseases. Therefore, the present study investigated the role of the Wnt2 gene in PINK1B9 transgenic flies, which is a PD model, and its underlying mechanism. It was identified that overexpression of Wnt2 reduced the abnormality rate of PD transgenic Drosophila and improved their flight ability, while other intervention groups had no significant effect. Furthermore, an increase in ATP concentration normalized mitochondrial morphology, and increased the mRNA expression levels of NADH‑ubiquinone oxidoreductase chain 1 (ND1), ND42, ND75, succinate dehydrogenase complex subunits B, Cytochrome b and Cyclooxygenase 1, which are associated with Wnt2 overexpression. Moreover, overexpression of Wnt2 in PD transgenic Drosophila resulted in the downregulation of reactive oxygen species and malondialdehyde production, and increased manganese superoxide dismutase (MnSOD), while glutathione was not significantly affected. It was found that overexpression of Wnt2 did not alter the protein expression of β‑catenin in PINK1B9 transgenic Drosophila, but did increase the expression levels of PPARG coactivator 1α (PGC‑1α) and forkhead box sub‑group O (FOXO). Collectively, the present results indicated that the Wnt2 gene may have a protective effect on PD PINK1B9 transgenic Drosophila. Thus, it was speculated that the reduction of oxidative stress and the restoration of mitochondrial function via Wnt2 overexpression may be related to the PGC‑1α/FOXO/MnSOD signaling pathway in PINK1 mutant transgenic Drosophila.
Collapse
Affiliation(s)
- Sui-Rui Xia
- Department of Hospital Infection‑Control, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541002, P.R. China
| | - Xue-Yi Wen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiao-Li Fan
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiao-Rong Chen
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zai-Wa Wei
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Qing-Hua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Li Sun
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
10
|
Maraldi T, Prata C, Marrazzo P, Hrelia S, Angeloni C. Natural Compounds as a Strategy to Optimize " In Vitro" Expansion of Stem Cells. Rejuvenation Res 2019; 23:93-106. [PMID: 31368407 DOI: 10.1089/rej.2019.2187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficient use of stem cells for transplantation is often limited by the relatively low number of stem cells collected. The ex vivo expansion of human stem cells for clinical use is a potentially valuable approach to increase stem cell number. Currently, most of the procedures used to expand stem cells are carried out using a 21% oxygen concentration, which is about 4- to 10-fold greater than the concentration characteristic of their natural niches. Hyperoxia might cause oxidative stress with a deleterious effect on the physiology of cultured stem cells. In this review, we investigate and critically examine the available information on the ability of natural compounds to counteract hyperoxia-induced damage in different types of stem cells ex vivo. In particular, we focused on proliferation and stemness maintenance in an attempt to draw up useful indications to define new culture media with a promoting activity on cell expansion in vitro.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | | |
Collapse
|
11
|
Wang H, Kim H, Lim WA, Ki JS. Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 2019; 46:5955-5966. [PMID: 31407247 DOI: 10.1007/s11033-019-05029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Dinoflagellate algae are microeukaryotes that have distinct genomes and gene regulation systems, making them an interesting model for studying protist evolution and genomics. In the present study, we discovered a novel manganese superoxide dismutase (PmMnSOD) gene from the marine dinoflagellate Prorocentrum minimum, examined its molecular characteristics, and evaluated its transcriptional responses to the oxidative stress-inducing contaminants, CuSO4 and NaOCl. Its cDNA was 1238 bp and contained a dinoflagellate spliced leader sequence, a 906 bp open reading frame (301 amino acids), and a poly (A) tail. The gene was coded on the nuclear genome with one 174 bp intron; signal peptide analysis showed that it might be localized to the mitochondria. Real-time PCR analysis revealed an increase in gene expression of MnSOD and SOD activity when P. minimum cells were separately exposed to CuSO4 and NaOCl. In addition, both contaminants considerably decreased chlorophyll autofluorescence, and increased intracellular reactive oxygen species. These results suggest that dinoflagellate MnSOD may be involved in protecting cells against oxidative damage.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
12
|
Mitochondria and Female Germline Stem Cells-A Mitochondrial DNA Perspective. Cells 2019; 8:cells8080852. [PMID: 31398797 PMCID: PMC6721711 DOI: 10.3390/cells8080852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and mitochondrial DNA have important roles to play in development. In primordial germ cells, they progress from small numbers to populate the maturing oocyte with high numbers to support post-fertilization events. These processes take place under the control of significant changes in DNA methylation and other epigenetic modifiers, as well as changes to the DNA methylation status of the nuclear-encoded mitochondrial DNA replication factors. Consequently, the differentiating germ cell requires significant synchrony between the two genomes in order to ensure that they are fit for purpose. In this review, I examine these processes in the context of female germline stem cells that are isolated from the ovary and those derived from embryonic stem cells and reprogrammed somatic cells. Although our knowledge is limited in this respect, I provide predictions based on other cellular systems of what is expected and provide insight into how these cells could be used in clinical medicine.
Collapse
|