1
|
Dias LM, de Keijzer MJ, Ernst D, Sharifi F, de Klerk DJ, Kleijn TG, Desclos E, Kochan JA, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Fens MH, Barendrecht AD, Cavaco JEB, Huang X, Xu Y, Pan W, den Broeder MJ, Bogerd J, Schulz RW, Castricum KC, Thijssen VL, Cheng S, Ding B, Krawczyk PM, Heger M. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112500. [PMID: 35816857 DOI: 10.1016/j.jphotobiol.2022.112500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniël Ernst
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Leonardo P Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB 2), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Albert C van Wijk
- Department of Surgery, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - José E B Cavaco
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Xuan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Marjo J den Broeder
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Kitty C Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Dias LM, Sharifi F, de Keijzer MJ, Mesquita B, Desclos E, Kochan JA, de Klerk DJ, Ernst D, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Cavaco JEB, Tedesco AC, Huang X, Pan W, Ding B, Krawczyk PM, Heger M. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112146. [PMID: 33601256 DOI: 10.1016/j.jphotobiol.2021.112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-μM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 μM and ZnPCS4 at 2.5 μM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 μM, 0.04 μM, and 0.81 μM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 μM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Mark J de Keijzer
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniel J de Klerk
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Daniël Ernst
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Lianne R de Haan
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Albert C van Wijk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - José E B Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Xuan Huang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
3
|
Yaghini E, Pirker KF, Kay CWM, Seifalian AM, MacRobert AJ. Quantification of reactive oxygen species generation by photoexcitation of PEGylated quantum dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:5106-5115. [PMID: 25164061 DOI: 10.1002/smll.201401209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Photocatalytic generation of reactive oxygen species (ROS) from quantum dots (QDs) has been widely reported yet quantitative studies of ROS formation and their quantum yields are lacking. This study investigates the generation of ROS by water soluble PEGylated CdSe/ZnS QDs with red emission. PEGylation of QDs is commonly used to confer water solubility and minimise uptake by organs of the reticuloendothelial system; therefore studies of ROS formation are of biomedical relevance. Using non-photolytic visible wavelength excitation, the superoxide anion radical is shown to be the primary ROS species generated with a quantum efficiency of 0.35%. The yield can be significantly enhanced in the presence of the electron donor, nicotinamide adenine dinucleotide (NADH), as demonstrated by oxygen consumption measurements and electron paramagnetic resonance spectroscopy with in situ illumination. Direct production of singlet oxygen is not detectable from the QDs alone. A comparison is made with ROS generation by the same QDs complexed with a sulfonated phthalocyanine which can generate singlet oxygen via Förster resonance energy transfer between the QDs and the phthalocyanine.
Collapse
Affiliation(s)
- Elnaz Yaghini
- Division of Surgery & Interventional Science, Charles Bell House, University College London, London, W1W 7EJ, UK
| | | | | | | | | |
Collapse
|
4
|
Yılmaz Y, Mack J, Şener MK, Sönmez M, Nyokong T. Synthesis, photophysicochemical properties and TD-DFT calculations of tetrakis(2-benzoyl-4-chlorophenoxy) phthalocyanines. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis of metal free, magnesium and zinc tetrakis(2-benzoyl-4-chlorophenoxy) phthalocyanine derivatives (2–4) is described along with their characterization by elemental analysis, IR, UV-visible absorption, and 1 H NMR spectroscopy and mass spectrometry. Trends observed in the fluorescence, triplet state, singlet oxygen and photodegradation quantum yields and the triplet state lifetimes are also analyzed. The compounds exhibit high solubility in a wide range of organic solvents and no evidence of aggregation was observed over a wide concentration range. The Zn ( II ) complex (4) was found to have a very high singlet oxygen quantum yield (ΦΔ = 0.78) in dimethylsulfoxide (DMSO) and a reasonably large triplet state quantum yield (ΦT = 0.82). The photophysical and photochemical properties clearly demonstrate that these compounds could prove useful in singlet oxygen applications such as photodynamic therapy (PDT). DFT and TD-DFT calculations were used to assess the impact of the positional isomerism of the 2-benzoyl-4-chlorophenoxy substituents on the electronic structures and optical spectroscopy.
Collapse
Affiliation(s)
- Yusuf Yılmaz
- Department of Chemistry, Gaziantep University, Gaziantep 27310, Turkey
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - M. Kasım Şener
- Department of Chemistry, Yıldız Technical University, Davutpaşa 34210, İstanbul, Turkey
| | - Mehmet Sönmez
- Department of Chemistry, Gaziantep University, Gaziantep 27310, Turkey
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
5
|
DECREAU RICHARD, RICHARD MARIEJEANNE, JULLIARD MICHEL. Photodynamic therapy against achromic M6 melanocytes: phototoxicity of lipophilic axially substituted aluminum phthalocyanines and hexadecahalogenated zinc phthalocyanines. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/jpp.343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lipophilic and axially substituted tri-n-hexylsiloxy aluminum phthalocyanine and cholesteryloxy diphenylsiloxy aluminum phthalocyanine were synthesized and assayed in PDT against M6 melanocytes. In the conditions used (λ > 480 nm , 10 mW cm-2, egg-yolk lecithin or cremophor EL formulation) they both exhibited a higher photodynamic effect than chloroaluminum phthalocyanine. They displayed 2% to 3.5% cell viability at 10-5M dose for 20 min irradiation. Hexadecafluoro zinc phthalocyanine was synthesized to increase the lipophilicity of zinc phthalocyanine, hexadecachloro zinc phthalocyanine was also included because it would theoretically enhance the phototoxicity. In all the delivery systems used, their photodynamic effect against M6 melanocytes was lower in comparison with zinc phthalocyanine and axially substituted aluminum phthalocyanines. A 2 h irradiation treatment with 3 × 10-6 M hexadecafluoro zinc phthalocyanine and 10-5 M hexadecachloro zinc phthalocyanine led to 60% and 15% cell viability respectively. In all cases, the cell killing effect was light-and dose-dependent and was higher in cremophor EL micelles than in the egg-yolk lecithin formulation.
Collapse
Affiliation(s)
- RICHARD DECREAU
- Laboratoire AM3: Activation, Mécanismes, Modélisation Moléculaire, Faculté des Sciences Saint Jérôme, F-13397 Marseille Cédex 20, France
| | - MARIE-JEANNE RICHARD
- Laboratoire de Biochimie C, Centre Hospitalier Universitaire A. Michallon, BP 217X, F-38043 Grenoble Cédex, France
| | - MICHEL JULLIARD
- Laboratoire AM3: Activation, Mécanismes, Modélisation Moléculaire, Faculté des Sciences Saint Jérôme, F-13397 Marseille Cédex 20, France
| |
Collapse
|
6
|
ALLEN CYNTHIAM, SHARMAN WESLEYM, VAN LIER JOHANE. Current status of phthalocyanines in the photodynamic therapy of cancer. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/jpp.324] [Citation(s) in RCA: 456] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy is a binary treatment now accepted in clinic for various malignancies in several countries around the world. Phthalocyanine molecules are second-generation photosensitizers with enhanced photophysical and photochemical properties over those of porphyrins. They have been shown to be phototoxic against a number of cell types and tumor models. A great deal of research has been devoted to the elucidation of their mechanism of action and mode of cell death. The present paper reviews phthalocyanine pre-clinical anti-cancer research with emphasis on phthalocyanine induced apoptosis using a silicon phthalocyanine, Pc 4. A brief summary of the latest clinical results using phthalocyanines is presented.
Collapse
Affiliation(s)
- CYNTHIA M. ALLEN
- MRC Group in the Radiation Sciences, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4, Canada
| | - WESLEY M. SHARMAN
- MRC Group in the Radiation Sciences, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4, Canada
| | - JOHAN E. VAN LIER
- MRC Group in the Radiation Sciences, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4, Canada
| |
Collapse
|
7
|
Achar BN, Mohan kumar TM, Lokesh KS. Synthesis, characterization, pyrolysis kinetics and conductivity studies of chloro substituted cobalt phthalocyanines. J COORD CHEM 2007. [DOI: 10.1080/00958970701194090] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- B. N. Achar
- a Department of Studies in Chemistry , University of Mysore , Manasagangotri, Mysore 570 006, Karnataka State, India
| | - T. M. Mohan kumar
- a Department of Studies in Chemistry , University of Mysore , Manasagangotri, Mysore 570 006, Karnataka State, India
| | - K. S. Lokesh
- a Department of Studies in Chemistry , University of Mysore , Manasagangotri, Mysore 570 006, Karnataka State, India
| |
Collapse
|
8
|
Martins J, Almeida L, Laranjinha J. Simultaneous Production of Superoxide Radical and Singlet Oxygen by Sulphonated Chloroaluminum Phthalocyanine Incorporated in Human Low-density Lipoproteins: Implications for Photodynamic Therapy¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00082.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Barge J, Decréau R, Julliard M, Hubaud JC, Sabatier AS, Grob JJ, Verrando P. Killing efficacy of a new silicon phthalocyanine in human melanoma cells treated with photodynamic therapy by early activation of mitochondrion-mediated apoptosis. Exp Dermatol 2004; 13:33-44. [PMID: 15009114 DOI: 10.1111/j.0906-6705.2004.00147.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photodynamic therapy (PDT) is a promising therapeutic modality that utilizes a combination of a photosensitizer and visible light for the destruction of diseased tissues. Using human-pigmented melanoma cells, we examined the photokilling efficacy of new silicon-phthalocyanines (SiPc) that bore bulky axial substituents. The bis(cholesteryloxy) derivate (Chol-O-SiPc) displayed the best in vitro photokilling efficacy (LD(50) = 6-8 x 10(-9) M) and was seven to nine times more potent than chloro-aluminium Pc (ClAlPc), a known photosensitizer used as a reference. Although Chol-O-SiPc was half as potent as ClAlPc for promoting photo-oxidative membrane damage in a cell-free assay, early events of mitochondrion-mediated apoptosis upon PDT were triggered much faster, as demonstrated by kinetics studies examining cells with permeabilized mitochondrial membranes, cytochrome c release and caspase-9 activation. Inhibition of caspase-9 activity by a substrate analogue argued for its central role in the proapoptotic events leading to cell death by Chol-O-SiPc PDT. In addition, immunoblots showed that Bcl-2 antiapoptotic oncoprotein was not a primary target of Chol-O-SiPc in M3Dau cells treated with PDT. Conclusively, Chol-O-SiPc is a useful new photosensitizer with the property of triggering cell apoptosis mediated by mitochondria.
Collapse
Affiliation(s)
- Jérôme Barge
- Laboratoire Activation, Mécanismes, Modélisation Moléculaire, ESA CNRS 6009, Faculté des Sciences de Saint Jérôme, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Martins J, Almeida L, Laranjinha J. Simultaneous Production of Superoxide Radical and Singlet Oxygen by Sulphonated Chloroaluminum Phthalocyanine Incorporated in Human Low-density Lipoproteins: Implications for Photodynamic Therapy¶. Photochem Photobiol 2004. [DOI: 10.1562/2004-03-26-ra-124.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
BEN-HUR EHUD, CHAN WAISHUN. Phthalocyanines in Photobiology and Their Medical Applications. THE PORPHYRIN HANDBOOK 2003:1-35. [DOI: 10.1016/b978-0-08-092393-2.50007-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Affiliation(s)
- W M Sharman
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Quebéc, Canada
| | | | | |
Collapse
|
13
|
Decréau R, Chanon M, Julliard M. Synthesis and characterization of a series of hexadecachlorinated phthalocyanines. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(99)00237-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Decreau R, Richard MJ, Verrando P, Chanon M, Julliard M. Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1999; 48:48-56. [PMID: 10205878 DOI: 10.1016/s1011-1344(99)00008-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dichlorosilicon phthalocyanine (Cl2SiPc) and bis(tri-n-hexylsiloxy) silicon phthalocyanine (HexSiPc) have been evaluated in vitro as potential photosensitizers for photodynamic therapy (PDT) against the human amelanotic melanoma cell line M6. Each photosensitizer is dissolved in a solvent-PBS mixture, or entrapped in egg-yolk lecithin liposomes or in Cremophor EL micelles. The cells are incubated for 1 h with the sensitizer and then irradiated for 20 min, 1 h or 2 h (lambda > 480 nm, 10 mW cm-2). The photocytotoxic effect is dependent on the photosensitizer concentration and the light dose. Higher phototoxicity is observed after an irradiation of 2 h: treatment with a solution of photosensitizer (2 x 10(-9) M) leads to 10% (HexSiPc in egg-yolk lecithin liposomes) or 20% (Cl2SiPc in DMF-PBS solution) cell viability. After 1 h incubation and 20 min of light exposure, the photodynamic effect is connected with the type of delivery system used. For HexSiPc, lower cell viability is found when this photosensitizer is entrapped in egg-yolk lecithin instead of solvent-PBS or for Cremophor EL micelles with Cl2SiPc. Liposome-delivered HexSiPc leads to lipid damage in M6 cells, illustrated by an increase of thiobarbituric acid-reacting substances (TBARs), but the change is not significant with Cremophor EL. The same is observed for the antioxidative defences after photodynamic stress. The cells irradiated with HexSiPc entrapped in liposomes display an increase of superoxide dismutase (SOD) activity and a decrease of glutathione (GSH) level, glutathione peroxidase (GSHPx) and catalase (Cat) activities.
Collapse
Affiliation(s)
- R Decreau
- Laboratoire AM: Activation, Mécanismes, Modélisation Moléculaire-ESA CNRS 6009, Faculté des Sciences Saint Jérôme, Marseille, France
| | | | | | | | | |
Collapse
|