1
|
Espinoza Ballesteros M, Schöneich C. Near UV and Visible Light Photodegradation in Solid Formulations: Generation of Carbon Dioxide Radical Anions from Citrate Buffer and Fe(III). Mol Pharm 2024; 21:4618-4633. [PMID: 39110953 DOI: 10.1021/acs.molpharmaceut.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Near UV and visible light photodegradation can target therapeutic proteins during manufacturing and storage. While the underlying photodegradation pathways are frequently not well-understood, one important aspect of consideration is the formulation, specifically the formulation buffer. Citrate is a common buffer for biopharmaceutical formulations, which can complex with transition metals, such as Fe(III). In an aqueous solution, the exposure of such complexes to light leads to the formation of the carbon dioxide radical anion (•CO2-), a powerful reductant. However, few studies have characterized such processes in solid formulations. Here, we show that solid citrate formulations containing Fe(III) lead to the photochemical formation of •CO2-, identified through DMPO spin trapping and HPLC-MS/MS analysis. Factors such as buffers, the availability of oxygen, excipients, and manufacturing processes of solid formulations were evaluated for their effect on the formation of •CO2- and other radicals such as •OH.
Collapse
Affiliation(s)
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
2
|
Kok EA, den Besten-Bertholee D, van Berkel S, Larmené-Beld KHM. Detection and Identification of an Unknown Impurity in Ephedrine HCl 5 mg/mL Cyclic Olefin Syringes: Formulation Development. AAPS PharmSciTech 2023; 24:140. [PMID: 37349566 DOI: 10.1208/s12249-023-02602-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/04/2023] [Indexed: 06/24/2023] Open
Abstract
An unknown impurity was detected in in-house prepared ephedrine hydrochloride (HCl) 5 mg/mL prefilled sterilized syringes when applying a stability-indicating British Pharmacopoeia 2018 impurity method for ephedrine injection. Ultraviolet, chromatographic, mass spectral, and physicochemical methods were combined to identify the unknown impurity. The unknown impurity was identified as methcathinone, which is generated from ephedrine drug substance through an oxidation reaction. A formulation study, in which different process adjustments were tested, was carried out to reduce the amount of unknown impurity. Nitrogen gassing in combination with 0.05 M citrate buffer addition proved to be the most potent process adjustment in reducing methcathinone formation in ephedrine HCl 5 mg/mL prefilled sterilized syringes after 4 months of storage in the dark at room temperature (20 °C ± 5 °C). More detailed research on the long-term stability of the reformulated ephedrine HCl drug product is currently underway, with promising results for up to 9 months gathered already.
Collapse
Affiliation(s)
- Ellen A Kok
- Unit of Pharmacotherapy, -Epidemiology, and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, Groningen, the Netherlands
- Department of Clinical Pharmacy, Isala Hospital, 8025 AB, Zwolle, Overijssel, the Netherlands
| | | | - Stefan van Berkel
- Department of Clinical Pharmacy, Isala Hospital, 8025 AB, Zwolle, Overijssel, the Netherlands
| | - Karin H M Larmené-Beld
- Department of Clinical Pharmacy, Isala Hospital, 8025 AB, Zwolle, Overijssel, the Netherlands.
| |
Collapse
|
3
|
Szekeres M, Tóth IY, Illés E, Hajdú A, Zupkó I, Farkas K, Oszlánczi G, Tiszlavicz L, Tombácz E. Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int J Mol Sci 2013; 14:14550-74. [PMID: 23857054 PMCID: PMC3742259 DOI: 10.3390/ijms140714550] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 01/04/2023] Open
Abstract
Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.
Collapse
Affiliation(s)
- Márta Szekeres
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary; E-Mails: (I.Y.T.); (E.I.)
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (E.T.); Tel.: +36-62-544-212 (M.S. & E.T.); Fax: +36-62-546-482 (M.S.)
| | - Ildikó Y. Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary; E-Mails: (I.Y.T.); (E.I.)
| | - Erzsébet Illés
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary; E-Mails: (I.Y.T.); (E.I.)
| | - Angéla Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; E-Mail:
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 1, H-6720 Szeged, Hungary; E-Mail:
| | - Katalin Farkas
- Department of Laboratory Medicine, University of Szeged, Semmelweis u. 6, H-6720 Szeged, Hungary; E-Mail:
| | - Gábor Oszlánczi
- Department of Public Health, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; E-Mail:
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, H-6720 Szeged, Hungary; E-Mail:
| | - Etelka Tombácz
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary; E-Mails: (I.Y.T.); (E.I.)
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (E.T.); Tel.: +36-62-544-212 (M.S. & E.T.); Fax: +36-62-546-482 (M.S.)
| |
Collapse
|