1
|
Rana R, Kuche K, Jain S, Chourasia MK. Addressing overlooked design considerations for nanoemulsions. Nanomedicine (Lond) 2024; 19:2727-2745. [PMID: 39555803 DOI: 10.1080/17435889.2024.2429947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Despite progress in genetic and molecular research, which has opened up a myriad of targeted therapeutic possibilities, the compromised solubility and absorption profile of therapeutic entities restrict their passage across lipid barriers compromising efficacy. Consequently, nanoemulsions accrued significance as futuristic, safe, and effective lipid-based drug delivery systems due to their inherent array of physicochemical properties and provide exquisite bioavailability, reduced toxicity, and improved solubility of hydrophobic entities based on size and surface area. However, a pronounced gap exists in understanding and addressing challenges that arise during design and development of nanoemulsions. In this context, we have attempted to reconsider overlooked aspects of nanoemulsion design, offering insight into its commercial viability.
Collapse
Affiliation(s)
- Rafquat Rana
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
3
|
Chaurasia M, Singh R, Sur S, Flora SJS. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 2023; 14:1184472. [PMID: 37576816 PMCID: PMC10416257 DOI: 10.3389/fphar.2023.1184472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed solid cancers globally. Extensive research has been going on for decades to meet the challenges of treating solid tumors with selective compounds. This article aims to summarize the therapeutic agents which are either being used or are currently under approval for use in the treatment or mitigation of breast cancer by the US FDA, to date. A structured search of bibliographic databases for previously published peer-reviewed research papers on registered molecules was explored and data was sorted in terms of various categories of drugs used in first line/adjuvant therapy for different stages of breast cancer. We included more than 300 peer-reviewed papers, including both research and reviews articles, in order to provide readers an useful comprehensive information. A list of 39 drugs are discussed along with their current status, dose protocols, mechanism of action, pharmacokinetics, possible side effects, and marketed formulations. Another interesting aspect of the article included focusing on novel formulations of these drugs which are currently in clinical trials or in the process of approval. This exhaustive review thus shall be a one-stop solution for researchers who are working in the areas of formulation development for these drugs.
Collapse
Affiliation(s)
| | | | | | - S. J. S. Flora
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Ardad RM, Manjappa AS, Dhawale SC, Kumbhar PS, Pore YV. Concurrent oral delivery of non-oncology drugs through solid self-emulsifying system for repurposing in hepatocellular carcinoma. Drug Dev Ind Pharm 2023:1-21. [PMID: 37216496 DOI: 10.1080/03639045.2023.2216785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs. SIGNIFICANCE The identified non-oncology drug cocktail could overcome the shortage of anticancer therapeutics and help to reduce cancer-related mortality. Moreover, the developed S-SEDDS could be an ideal system for concurrent oral delivery of non-oncology drug combinations. METHODS The non-oncology drugs (alone and in combinations) were screened in vitro for anticancer effect (against HepG2 cells) using (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; MTT) dye assay, and cell cycle arresting and apoptotic behaviors using the fluorescence-activated cell sorting (FACS) technique. The S-SEDDS is composed of drugs such as Ketoconazole (KCZ), Disulfiram (DSR), Tadalafil (TLF), and excipients like span-80, tween-80, soybean oil, Leciva S-95, Poloxamer F108 (PF-108), and Neusilin® US2 (adsorbent carrier) was developed and characterized. RESULTS The cocktail composed of KCZ, DSR, and TLF has showed substantial cytotoxicity (at the lowest concentration of 3.3 picomoles), HepG2 cell arrest at G0/G1 and S phases, and substantial cell death via apoptosis. The Docetaxel (DTX) inclusion into this cocktail has further resulted in increased cytotoxicity, cell arrest at the G2/M phase, and cell necrosis. The optimized blank liquid SEDDS that remains transparent without phase separation for more than 6 months is used for the preparation of drug-loaded liquid SEDDS (DL-SEDDS). The optimized DL-SEDDS with low viscosity, good dispersibility, considerable drug retention upon dilution, and smaller particle size is further converted into drug-loaded solid SEDDS (DS-SEDDS). The final DS-SEDDS demonstrated acceptable flowability and compression characteristics, significant drug retention (more than 93%), particle size in nano range (less than 500 nm) and nearly spherical morphology following dilutions. The DS-SEDDS showed substantially increased cytotoxicity and Caco-2 cell permeability than plain drugs. Furthermore, DS-SEDDS containing only non-oncology drugs caused lower in vivo toxicity (only 6% body weight loss) than DS-SEDDS containing non-oncology drugs with DTX (about 10% weight loss). CONCLUSION The current study revealed a non-oncology drug combination effective against hepatocellular carcinoma. Further, it is concluded that the developed S-SEDDS containing non-oncology drug combination alone and in combination with DTX could be a promising alternative to toxic chemotherapeutics for the effective oral treatment of hepatic cancer.
Collapse
Affiliation(s)
- Rameshwar M Ardad
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Marathwada University, Nanded, Maharashtra, India
- Department of Quality Assurance, Dr. Shivajirao Kadam College of Pharmacy, Kasbe Digraj, Sangli, India
| | - Arehalli S Manjappa
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Tal- Panhala, Dist- Kolhapur, 416114 (MS)
| | - Shashikant C Dhawale
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Marathwada University, Nanded, Maharashtra, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Department of Pharmaceutics, Warananagar, Taluka Panhala, District Kolhapur, Maharashtra, India
| | - Yogesh V Pore
- Department of Pharmaceutical Chemistry, Government College of Pharmacy,Ratnagiri, Maharshtra, India
| |
Collapse
|
5
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
7
|
Synthesis, Characterization, and In Vivo Distribution of 99mTc Radiolabelled Docetaxel Loaded Folic Acid-Thiolated Chitosan Enveloped Liposomes. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Ethylferulate-loaded nanoemulsions as a novel anti-inflammatory approach for topical application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ahmad MZ, Alasiri AS, Alasmary MY, Abdullah MM, Ahmad J, Abdel Wahab BA, M Alqahtani SA, Pathak K, Mustafa G, Khan MA, Saikia R, Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: opportunities and challenges. Immunotherapy 2022; 14:957-983. [PMID: 35852105 DOI: 10.2217/imt-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is one of the most common causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and an appropriate therapeutic approach for all cancers are climacterics for a favorable prognosis. Targeting the immune system in breast cancer is already a clinical reality with notable successes, specifically with checkpoint blockade antibodies and chimeric antigen receptor T-cell therapy. However, there have been inevitable setbacks in the clinical application of cancer immunotherapy, including inadequate immune responses due to insufficient delivery of immunostimulants to immune cells and uncontrolled immune system modulation. Rapid advancements and new evidence have suggested that nanomedicine-based immunotherapy may be a viable option for treating breast cancer.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Ali S Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Medical Department, College of Medicine, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - M M Abdullah
- Advanced Materials & Nano-Research Centre, Department of Physics, Faculty of Science & Arts, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gulam Mustafa
- College of Pharmacy, Shaqra University, Ad-Dawadmi Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
10
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Abu-Huwaij R, Al-Assaf SF, Hamed R. Recent exploration of nanoemulsions for drugs and cosmeceuticals delivery. J Cosmet Dermatol 2021; 21:3729-3740. [PMID: 34964223 DOI: 10.1111/jocd.14704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nanoemulsions (NEs) have been explored as nanocarriers for the delivery of many drugs and cosmeceuticals. The extraordinary expansion of using NEs is due to their capability to conquer the main challenges of conventional delivery systems such as short residence time with low patient acceptance, poor stability, low aqueous solubility, permeability, and hence bioavailability. METHODS This review recapitulated the most recent pharmaceutical and cosmeceutical applications of NEs as effective delivery nanocarriers. The outputs of our research studies and the literature review on the latest NEs applications were assessed to highlight the NEs components, preparations, applications, and the improved quality and elegance of the used product. RESULTS NEs are stable submicronic translucent dispersions with narrow droplet size distribution. They exhibited excellent ability to efficiently encapsulate therapeutics of diverse nature of drugs and cosmeceuticals. NE formulations showed superiority over conventional delivery approaches with overabundances of advantages through different routes of administration. This novel technology exhibited better aesthetic appeal, higher bioavailability, and a longer duration compared to the conventional delivery systems. CONCLUSION This novel technology holds promise for different therapeutics fields. However, the success of NEs use advocated the development of robust formulations, proper choice of equipment, ample process characterization, and assurance of their efficacy, stability, safety and cosmetic appeal.
Collapse
Affiliation(s)
- Rana Abu-Huwaij
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt, Jordan
| | - Sarah F Al-Assaf
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
12
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
13
|
|
14
|
Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling. J Control Release 2020; 328:368-394. [DOI: 10.1016/j.jconrel.2020.08.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/12/2023]
|
15
|
Alkhatib MH, Bawadud RS, Gashlan HM. Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells. Sci Rep 2020; 10:18124. [PMID: 33093596 PMCID: PMC7582846 DOI: 10.1038/s41598-020-75017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Combining more than one anticancer agent in a nanocarrier is beneficial in producing a formula with a low dose and limited adverse side effects. The current study aimed to formulate docetaxel (DTX) and thymoquinone (TQ) in borage oil-based nanoemulsion (B-NE) and evaluate its potential in impeding the growth of breast cancer cells. The formulated B-NE and the combination (DTX + TQ) B-NE were prepared by the ultra-sonication method and physically characterized by the dynamic light scattering techniques. The cytotoxicity analyses of (DTX + TQ) B-NE in MCF-7 and MDA-MB-231 cells were evaluated in vitro by using the SRB assay. Cell death mechanisms were investigated in terms of apoptosis and autophagy pathways by flow cytometry. The optimum mean droplet sizes formulated for blank B-NE and the (DTX + TQ) B-NE were 56.04 ± 4.00 nm and 235.00 ± 10.00 nm, respectively. The determined values of the half-maximal inhibitory concentration (IC50) of mixing one-half amounts of DTX and TQ in B-NE were 1.15 ± 0.097 µM and 0.47 ± 0.091 µM in MCF-7 and MDA-MB-231 cells, respectively, which were similar to the IC50 values of the full amount of free DTX in both tested cell lines. The treatment with (DTX + TQ) B-NE resulted in a synergistic effect on both tested cells. (DTX + TQ) B-NE induced apoptosis that was integrated with the stimulation of autophagy. The produced formulation enhances the DTX efficacy against human breast cancer cells by reducing its effective dose, and thus it could have the potential to minimize the associated toxicity.
Collapse
Affiliation(s)
- Mayson H Alkhatib
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Raghdah S Bawadud
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hana M Gashlan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Kang JA, Sin JH, Lee HL, Kim HR, Kim SH, Kang MK, Yu AR, Son MH, Park HJ, Lee JJ. Inhibition of Pancreatic Cancer Cell Viability and Tumor Growth Through Cell Cycle Arrest by an Oral Formulation of Docetaxel DHP23001. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.994.1000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Singh Y, Viswanadham KKDR, Pawar VK, Meher J, Jajoriya AK, Omer A, Jaiswal S, Dewangan J, Bora HK, Singh P, Rath SK, Lal J, Mishra DP, Chourasia MK. Induction of Mitochondrial Cell Death and Reversal of Anticancer Drug Resistance via Nanocarriers Composed of a Triphenylphosphonium Derivative of Tocopheryl Polyethylene Glycol Succinate. Mol Pharm 2019; 16:3744-3759. [PMID: 31441308 DOI: 10.1021/acs.molpharmaceut.9b00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have devised a nanocarrier using "tocopheryl polyethylene glycol succinate (TPGS) conjugated to triphenylphosphonium cation" (TPP-TPGS) for improving the efficacy of doxorubicin hydrochloride (DOX). Triphenylphosphonium cation (TPP) has affinity for an elevated transmembrane potential gradient (mitochondrial), which is usually high in cancer cells. Consequently, when tested in molecular docking and cytotoxicity assays, TPP-TPGS, owing to its structural similarity to mitochondrially directed anticancer compounds of the "tocopheryl succinate" family, interferes specifically in mitochondrial CII enzyme activity, increases intracellular oxidative stress, and induces apoptosis in breast cancer cells. DOX loaded nanocarrier (DTPP-TPGS) constructed using TPP-TPGS was positively charged, spherical in shape, sized below 100 nm, and had its drug content distributed evenly. DTPP-TPGS offers greater intracellular drug delivery due to its rapid endocytosis and subsequent endosomal escape. DTPP-TPGS also efficiently inhibits efflux transporter P glycoprotein (PgP), which, along with greater cell uptake and inherent cytotoxic activity of the construction material (TPP-TPGS), cumulatively results in 3-fold increment in anticancer activity of DOX in resistant breast cancer cells as well as greater induction of necroapoptosis and arrest in all phases of the cell cycle. DTPP-TPGS after intravenous administration in Balb/C mice with breast cancer accumulates preferentially in tumor tissue, which produces significantly greater antitumor activity when compared to DOX solution. Toxicity evaluation was also performed to confirm the safety of this formulation. Overall TPP-TPGS is a promising candidate for delivery of DOX.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | | | - Vivek K Pawar
- Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Jayagopal Meher
- Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Arun Kumar Jajoriya
- Endocrinology Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Ankur Omer
- Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Swati Jaiswal
- Pharmacokinetics and Metabolism Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Jayant Dewangan
- Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - H K Bora
- Laboratory Animals Facility , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Poonam Singh
- CSIR-Central Electrochemical Research Institute , Karaikudi - 630003 , Tamil Nadu India
| | - Srikanta Kumar Rath
- Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Jawahar Lal
- Pharmacokinetics and Metabolism Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Durga Prasad Mishra
- Endocrinology Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Manish Kumar Chourasia
- Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| |
Collapse
|
18
|
Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, Abdul Rahman MB. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv Transl Res 2019; 9:543-554. [PMID: 29691812 DOI: 10.1007/s13346-018-0526-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility. In this work, screening and selection of pharmaceutically acceptable excipients at their minimal optimal concentration have been conducted. The selected nanoemulsion formulations were prepared using high-energy emulsification technique and subjected to physicochemical and aerodynamic characterizations. The formulated nanoemulsion had mean particle size and ζ-potential in the range of 90 to 110 nm and - 30 to - 40 mV respectively, indicating high colloidal stability. The pH, osmolality, and viscosity of the systems met the ideal requirement for pulmonary application. The DNE4 formulation exhibited slow drug release and excellent stability even under the influence of extreme environmental conditions. This was further confirmed by transmission electron microscopy as uniform spherical droplets in nanometer range were observed after storage at 45 ± 1 °C for 3 months indicating high thermal stability. The nebulized DNE4 exhibited desirable aerosolization properties for pulmonary delivery application and found to be more selective on human lung carcinoma cell (A549) than normal cell (MRC-5). Hence, these characteristics make the formulation a great candidate for the potential use as a carrier system for docetaxel in targeting lung cancer via pulmonary delivery.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Cheng Loong Ngan
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Haslina Ahmad
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, Espina M, Camins A, Garcia ML, Souto EB. Current Applications of Nanoemulsions in Cancer Therapeutics. NANOMATERIALS 2019; 9:nano9060821. [PMID: 31159219 PMCID: PMC6632105 DOI: 10.3390/nano9060821] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Nanoemulsions are pharmaceutical formulations composed of particles within a nanometer range. They possess the capacity to encapsulate drugs that are poorly water soluble due to their hydrophobic core nature. Additionally, they are also composed of safe gradient excipients, which makes them a stable and safe option to deliver drugs. Cancer therapy has been an issue for several decades. Drugs developed to treat this disease are not always successful or end up failing, mainly due to low solubility, multidrug resistance (MDR), and unspecific toxicity. Nanoemulsions might be the solution to achieve efficient and safe tumor treatment. These formulations not only solve water-solubility problems but also provide specific targeting to cancer cells and might even be designed to overcome MDR. Nanoemulsions can be modified using ligands of different natures to target components present in tumor cells surface or to escape MDR mechanisms. Multifunctional nanoemulsions are being studied by a wide variety of researchers in different research areas mainly for the treatment of different types of cancer. All of these studies demonstrate that nanoemulsions are efficiently taken by the tumoral cells, reduce tumor growth, eliminate toxicity to healthy cells, and decrease migration of cancer cells to other organs.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Mariana Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Ana Lopez-Machado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Miren Ettcheto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Amanda Cano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| | - Antoni Camins
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Maria Luisa Garcia
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Eliana B Souto
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
20
|
Zhang E, Xing R, Liu S, Li P. Current advances in development of new docetaxel formulations. Expert Opin Drug Deliv 2019; 16:301-312. [PMID: 30773947 DOI: 10.1080/17425247.2019.1583644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Docetaxel (DTX) is one of the most important chemotherapeutic agents and has been widely used for treatment of various types of cancers. However, the clinical chemotherapy of DTX gives many undesirable side effects due to the usage of organic solvent in the injection and its low selectivity for tumor cells. With the evolution of pharmaceutical technologies, great efforts have been paid to develop new DTX formulations to overcome these problems. AREAS COVERED This review provided an overview of the preparation and activities of new DTX formulations, which were classified by administration methods, including injection, oral, transdermal and rectal administration. Besides, up to date information of the clinical status of new DTX formulations was summarized. We also discussed the challenges and perspectives of the future development of DTX formulations. EXPERT OPINION There have been numerous studies on new DTX-based formulations in recent years, and many of them exhibited significantly enhanced anti-tumor and targeting activity compared with DTX in preclinical studies. However, only a few entered clinical trials, and none has been approved into market. The clinical translation of experimental drug faces many hurdles, including the limited knowledge of nanomedicine and oncology, safety issues, controllable and reproducible production.
Collapse
Affiliation(s)
- Enhui Zhang
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| | - Ronge Xing
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| | - Song Liu
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| | - Pengcheng Li
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| |
Collapse
|
21
|
Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, Hussain I, Webster TJ, Shahnaz G. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine 2018; 13:3145-3161. [PMID: 29922053 PMCID: PMC5997133 DOI: 10.2147/ijn.s164518] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.
Collapse
Affiliation(s)
- Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Mubashar Rehman
- Department of Pharmacy, University of Lahore-Gujrat Campus, Gujrat
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Hafiz Shoaib Sarwar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| | - Sara Naveed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
| | - Omer Salman
- Department of Pharmacy, University of Lahore, Lahore Campus
| | - Nadeem Irfan Bukhari
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| |
Collapse
|
22
|
Ikeuchi-Takahashi Y, Kobayashi A, Ishihara C, Matsubara T, Matsubara H, Onishi H. Influence of Polysorbate 60 on Formulation Properties and Bioavailability of Morin-Loaded Nanoemulsions with and without Low-Saponification-Degree Polyvinyl Alcohol. Biol Pharm Bull 2018; 41:754-760. [DOI: 10.1248/bpb.b17-00964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University
| |
Collapse
|
23
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
24
|
Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252:28-49. [PMID: 28279798 DOI: 10.1016/j.jconrel.2017.03.008] [Citation(s) in RCA: 631] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 01/07/2023]
Abstract
Nanoemulsions are biphasic dispersion of two immiscible liquids: either water in oil (W/O) or oil in water (O/W) droplets stabilized by an amphiphilic surfactant. These come across as ultrafine dispersions whose differential drug loading; viscoelastic as well as visual properties can cater to a wide range of functionalities including drug delivery. However there is still relatively narrow insight regarding development, manufacturing, fabrication and manipulation of nanoemulsions which primarily stems from the fact that conventional aspects of emulsion formation and stabilization only partially apply to nanoemulsions. This general deficiency sets up the premise for current review. We attempt to explore varying intricacies, excipients, manufacturing techniques and their underlying principles, production conditions, structural dynamics, prevalent destabilization mechanisms, and drug delivery applications of nanoemulsions to spike interest of those contemplating a foray in this field.
Collapse
|
25
|
Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv 2015; 23:2035-43. [DOI: 10.3109/10717544.2015.1088597] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Singh SK, Banala VT, Gupta GK, Verma A, Shukla R, Pawar VK, Tripathi P, Mishra PR. Development of docetaxel nanocapsules for improving in vitro cytotoxicity and cellular uptake in MCF-7 cells. Drug Dev Ind Pharm 2015; 41:1759-68. [PMID: 25686725 DOI: 10.3109/03639045.2014.1003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this study was to fabricate docetaxel loaded nanocapsules (DTX-NCs) with a high payload using Layer-by-Layer (LbL) technique by successive coating with alternate layers of oppositely charged polyelectrolytes. Developed nanocapsules (NCs) were characterized in terms of morphology, particle size distribution, zeta potential (ζ-potential), entrapment efficiency and in vitro release. The morphological characteristics of the NCs were assessed using transmission electron microscopy (TEM) that revealed coating of polyelectrolytes around the surface of particles. The developed NCs successfully attained a submicron particle size while the ζ-potential of optimized NCs alternated between (+) 34.64 ± 1.5 mV to (-) 33.25 ± 2.1 mV with each coating step. The non-hemolytic potential of the NCs indicated the suitability of the developed formulation for intravenous administration. A comparative study indicated that the cytotoxicity of positively charged NCs (F4) was significant higher (p < 0.05) rather than negative charged NCs (F3), plain drug (DTX) and marketed preparation (Taxotere®) when evaluated in vitro on MCF-7 cells. Furthermore, cell uptake studies evidenced a higher uptake of positive NCs (≥1.2 fold) in comparison to negative NCs. In conclusion, formulated NCs are an ideal vehicle for passive targeting of drugs to tumor cells that may result in improved efficacy and reduced toxicity of encapsulated drug moiety.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Venkatesh Teja Banala
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Girish K Gupta
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Ashwni Verma
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Rahul Shukla
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Vivek K Pawar
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Priyanka Tripathi
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| | - Prabhat Ranjan Mishra
- a Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India
| |
Collapse
|