1
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Jacob S, Boddu SHS, Bhandare R, Ahmad SS, Nair AB. Orodispersible Films: Current Innovations and Emerging Trends. Pharmaceutics 2023; 15:2753. [PMID: 38140094 PMCID: PMC10747242 DOI: 10.3390/pharmaceutics15122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Richie Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Samiullah Shabbir Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Ghataty DS, Amer RI, Wasfi R, Shamma RN. Novel linezolid loaded bio-composite films as dressings for effective wound healing: experimental design, development, optimization, and antimicrobial activity. Drug Deliv 2022; 29:3168-3185. [PMID: 36184799 PMCID: PMC9543119 DOI: 10.1080/10717544.2022.2127974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Biphasic release bio-composite films of the low water-soluble drug, linezolid (LNZ), were formulated using the solvent casting technique. Different polymers and plasticizers (gelatin, Tween 80, polyethylene glycol 400, and glycerol) were assessed for the preparation of bio-composite films. An I-optimal design was applied for the optimization and to study the impact of polymer concentration (X1), plasticizer concentration (X2), polymer type (X3), and plasticizer type (X4) on different LNZ-loaded bio-composite films. The film thickness, moisture content, mechanical properties, swelling index, and percentage of drug release at fixed times opted as dependent variables. Results demonstrated a significant effect of all independent variables on the drug release from the prepared bio-composite films. The plasticizer concentration significantly increased the thickness, moisture content, elongation at break, swelling index, and in vitro drug release and significantly reduced the tensile strength. The optimized LNZ-loaded bio-composite film comprised of 15% Tween 80 and 30% PEG 400 was highly swellable, elastic, acceptable tensile properties, safe, maintained a moist environment, and indicated great antimicrobial activity against both Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus (MRSA), which are common wound infectious bacteria. The present study concludes that the optimized LNZ-loaded bio-composite film was successfully designed with fast drug release kinetics and it could be regarded as a promising novel antimicrobial wound dressing formulation.
Collapse
Affiliation(s)
- Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ibrahim Amer
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reham Wasfi
- Department of Microbiology and Immunology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Rehab Nabil Shamma
| |
Collapse
|
4
|
Pardeshi SR, Kole EB, Kapare HS, Chandankar SM, Shinde PJ, Boisa GS, Salgaonkar SS, Giram PS, More MP, Kolimi P, Nyavanandi D, Dyawanapelly S, Junnuthula V. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 2022; 14:pharmaceutics14122632. [PMID: 36559129 PMCID: PMC9784462 DOI: 10.3390/pharmaceutics14122632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e., the drying process) faces several challenges, and overall mastering depends on the end step. The advent of new emerging technologies paved the way for commercialization. Thin film freezing (TFF) is a new emerging freeze-drying technique available for various treatment modalities in drug delivery. TFF has now been used for the commercialization of pharmaceuticals, food, and biopharmaceutical products. The present review highlights the fundamentals of TFF along with modulated techniques used for drying pharmaceuticals and biopharmaceuticals. Furthermore, we have covered various therapeutic applications of TFF technology in the development of nanoformulations, dry powder for inhalations and vaccines. TFF holds promise in delivering therapeutics for lung diseases such as fungal infection, bacterial infection, lung dysfunction, and pneumonia.
Collapse
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Eknath B. Kole
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, India
| | - Harshad S. Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Sachin M. Chandankar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Prashant J. Shinde
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Ganesh S. Boisa
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Sanjana S. Salgaonkar
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Mahesh P. More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Dinesh Nyavanandi
- Product Development, Continuus Pharmaceuticals, 25 Olympia Ave, Woburn, MA 01801, USA
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| |
Collapse
|
5
|
Liu X, Huang S, Ma L, Ye H, Lin J, Cai X, Shang Q, Zheng C, Xu R, Zhang D. Recent advances in wearable medical diagnostic sensors and new therapeutic dosage forms for fever in children. J Pharm Biomed Anal 2022; 220:115006. [PMID: 36007307 DOI: 10.1016/j.jpba.2022.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lele Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
6
|
Mann G, Gurave PM, Kaul A, Kadiyala KG, Pokhriyal M, Srivastava RK, Kumar A, Datta A. Polymeric and electrospun patches for drug delivery through buccal route: Formulation and biointerface evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kamal MM, Akter S, Al Hagbani T, Salawi A, Nazzal S. Sustained release of curcumin self-emulsifying drug delivery system (SEDDS) from solvent-cast Soluplus ® films. Pharm Dev Technol 2021; 26:1102-1109. [PMID: 34645368 DOI: 10.1080/10837450.2021.1993912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The objective of the present study was to investigate the feasibility of formulating and loading Curcumin SEDDS (Self-Emulsified Drug Delivery Systems) into films made from Soluplus® as the film-forming polymer. Films with up to 30% of Curcumin SEDDS were prepared by the solvent casting technique and analyzed for their mechanical and dissolution properties. A nine-run, two-factor, three-level factorial design was utilized to investigate the effect of SEDDS load (10, 20, and 30% w/w) and film thickness (10, 25, and 40 mils) on the tensile strength, elongation, and adhesiveness of the films. The dissolution profile of the films was also investigated by a USP Type 1 method. SEDDS loading was found to plasticize Soluplus® and to yield transparent films of good mechanical properties. Increasing SEDDS load, however, was found to reduce the tensile strength of the films, while increasing their adhesiveness and elongation. On the other hand, while an increase in film thickness was found to increase the tensile strength of the films, it reduced the elongation capacity of the films. Loading SEDDS into Soluplus® films was also found to sustain their release over 6 h, where a significant delay in release was found at lower SEDDS loads. This study demonstrated that Soluplus® can be used not only to formulate SEDDS into polymeric films but also to sustain their release over an extended time.
Collapse
Affiliation(s)
- Mohammad M Kamal
- Fresenius Kabi USA, Melrose Park, IL, USA.,School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Sharmin Akter
- Shaheed Ziaur Rahman Medical College and Hospital, Bogura, Bangladesh
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Ahmad Salawi
- College of Pharmacy, Jazan University, Gizan, Saudi Arabia
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| |
Collapse
|
8
|
Development, optimization and in-vivo evaluation of cyanocobalamin loaded orodispersible films using hot-melt extrusion technology: A quality by design (QbD) approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Flores-Arriaga JC, Chavarría-Bolaños D, Pozos-Guillén ADJ, Escobar-Barrios VA, Cerda-Cristerna BI. Synthesis of a PVA drug delivery system for controlled release of a Tramadol-Dexketoprofen combination. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:56. [PMID: 33961138 PMCID: PMC8105240 DOI: 10.1007/s10856-021-06529-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The local administration of analgesic combinations by means of degradable polymeric drug delivery systems is an alternative for the management of postoperative pain. We formulated a Tramadol-Dexketoprofen combination (TDC) loaded in poly(vinyl alcohol) (PVA) film. Films were prepared by the solvent casting method using three different molecular weights of PVA and crosslinking those films with citric acid, with the objective of controlling the drug release rate, which was evaluated by UV-vis spectrometry. Non-crosslinked PVA films were also evaluated in the experiments. Differential scanning calorimetry (DSC) analysis of samples corroborated the crosslinking of PVA by the citric acid. Blank and loaded PVA films were tested in vitro for its impact on blood coagulation prothrombin time (PT) and partial thromboplastin time (PTT). The swelling capacity was also evaluated. Crosslinked PVA films of higher-molecular weight showed a prolonged release rate compared with that of the lower-molecular-weight films tested. Non-crosslinked PVA films released 11-14% of TDC. Crosslinked PVA films released 80% of the TDC loaded (p < 0.05). This suggests that crosslinking films can modify the drug release rate. The blank and loaded PVA films induced PT and PTT in the normal range. The results showed that the polymeric films evaluated here have the appropriate properties to allow films to be placed directly on surgical wounds and have the capacity for controlled drug release to promote local analgesia for the control of postoperative pain.
Collapse
Affiliation(s)
- Juan Carlos Flores-Arriaga
- Advanced Polymers Lab, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa 2055, Lomas 4a, 78216, San Luis Potosí, SLP, Mexico
| | - Daniel Chavarría-Bolaños
- Diagnostic and Surgical Sciences Department, Faculty of Dentistry, Universidad de Costa Rica, San Jose, Costa Rica
| | - Amaury de Jesús Pozos-Guillén
- Basic Science Laboratory, Faculty of Dentistry, San Luis Potosi University, Manuel Nava 2, Zona Universitaria, 78290, San Luis Potosí, SLP, México
| | - Vladimir Alonso Escobar-Barrios
- Advanced Polymers Lab, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa 2055, Lomas 4a, 78216, San Luis Potosí, SLP, Mexico.
| | - Bernardino Isaac Cerda-Cristerna
- Facultad de Odontología, Región Orizaba-Córdoba, Universidad Veracruzana, Abasolo Sur, SN, Tenango de Río Blanco, 94732, Veracruz, México.
| |
Collapse
|
10
|
Qureshi D, Sahoo A, Mohanty B, Anis A, Kulikouskaya V, Hileuskaya K, Agabekov V, Sarkar P, Ray SS, Maji S, Pal K. Fabrication and Characterization of Poly (vinyl alcohol) and Chitosan Oligosaccharide-Based Blend Films. Gels 2021; 7:55. [PMID: 34066326 PMCID: PMC8162339 DOI: 10.3390/gels7020055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
In the present study, we report the development of poly (vinyl alcohol) (PVA) and chitosan oligosaccharide (COS)-based novel blend films. The concentration of COS was varied between 2.5-10.0 wt% within the films. The inclusion of COS added a brown hue to the films. FTIR spectroscopy revealed that the extent of intermolecular hydrogen bonding was most prominent in the film that contained 5.0 wt% of COS. The diffractograms showed that COS altered the degree of crystallinity of the films in a composition-dependent manner. As evident from the thermal analysis, COS content profoundly impacted the evaporation of water molecules from the composite films. Stress relaxation studies demonstrated that the blend films exhibited more mechanical stability as compared to the control film. The impedance profiles indicated the capacitive-dominant behavior of the prepared films. Ciprofloxacin HCl-loaded films showed excellent antimicrobial activity against Escherichia coli and Bacillus cereus. The prepared films were observed to be biocompatible. Hence, the prepared PVA/COS-based blend films may be explored for drug delivery applications.
Collapse
Affiliation(s)
- Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| | - Ayasharani Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| | | | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Viktoryia Kulikouskaya
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.K.); (K.H.); (V.A.)
| | - Kseniya Hileuskaya
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.K.); (K.H.); (V.A.)
| | - Vladimir Agabekov
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.K.); (K.H.); (V.A.)
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Sirsendu Sekhar Ray
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| | - Samarendra Maji
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| |
Collapse
|
11
|
Asiri A, Hofmanová J, Batchelor H. A review of in vitro and in vivo methods and their correlations to assess mouthfeel of solid oral dosage forms. Drug Discov Today 2021; 26:740-753. [PMID: 33359115 DOI: 10.1016/j.drudis.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
This review analyses the relationship between instrumental and human data used to assess the mouthfeel of solid oral dosage forms to provide recommendations on the most appropriate methods to use in future studies.
Collapse
Affiliation(s)
- Abdullah Asiri
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Faculty of Clinical Pharmacy, Albaha University, Alaqiq, 65779-77388, Saudi Arabia
| | - Justyna Hofmanová
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
12
|
Zhao L, Orlu M, Williams GR. Electrospun fixed dose combination fibers for the treatment of cardiovascular disease. Int J Pharm 2021; 599:120426. [PMID: 33662468 DOI: 10.1016/j.ijpharm.2021.120426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Fixed dose combinations (FDCs) offer an accessible way to simplify complex therapeutic regimens by the simultaneous presentation of multiple drugs in a single entity to the patient. However, encapsulation of hydrophobic drugs into FDCs possess a number of technical challenges. Electrospinning comprises a convenient way to incorporate multiple hydrophobic drugs into a single formulation in a single step, via the use of an appropriate organic solvent system during fabrication. In this study, we report a series of novel fiber formulations comprising ethyl cellulose loaded with two hydrophobic drugs, spironolactone and nifedipine, either individually or in combination. The drugs are found to be present in the fibers in the form of amorphous solid dispersions, and these are stable at room temperature for 4 months. The products showed extended release profiles over more than 30 h. This formulation strategy offers potential to manage chronic cardiovascular conditions and overcome patient related non-adherence by providing a simplified treatment model.
Collapse
Affiliation(s)
- Lixiang Zhao
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
13
|
Ciprofloxacin self-dissolvable Soluplus based polymeric films: a novel proposal to improve the management of eye infections. Drug Deliv Transl Res 2021; 11:608-625. [PMID: 33528829 PMCID: PMC7852484 DOI: 10.1007/s13346-020-00887-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Infections of the eye are among the leading causes of vision impairment and vision loss worldwide. The ability of a drug to access the anterior parts of the eye is negligible after systemic administration. Effective drug delivery to the eye is a major challenge due to the presence of protective mechanisms and physiological barriers that result in low ocular availability after topical application. The main purpose of this work was the improvement of the corneal and conjunctival permeation of the antibiotic Ciprofloxacin, a wide spectrum antibiotic used for the most common eye infection, using a self-dissolving polymeric film. Films were prepared by the solvent casting technique, using polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus), polyvynyl alcohol, and propylene glycol. Films were homogeneous in drug content and thickness, as demonstrated by adapting the Swiss Roll technique followed by microscopy observation. These films proved in vitro to control the release of the Ciprofloxacin. Ex vivo permeability studies using Franz diffusion cells and porcine cornea and sclera showed an effective permeability of the drug without inducing irritation of the tissues. Films swelled in contact with artificial tears forming an in situ gel over 20 min, which will improve drug contact and reduce the need of multiple dosing. The antibiotic activity was also tested in vitro in five types of bacterial cultures, assuring the pharmacological efficacy of the films. The developed films are a promising drug delivery system to topically treat or prevent ocular infections.
Collapse
|
14
|
Kendre PN, Kadam PD, Jain SP, Vibhute SK, Pote AK. Design, fabrication, and characterization of graft co-polymer assisted ocular insert: a state of art in reducing post-operative pain. Drug Dev Ind Pharm 2020; 46:1988-1999. [PMID: 33026260 DOI: 10.1080/03639045.2020.1833908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Targeted delivery of drugs at appropriate concentrations to ocular tissues is required to avoid wastage. Hence, advanced systems that maximize the release of poorly soluble drugs and deliver them at ocular sites must be designed. METHODS In this study, Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol-graft copolymer) was selected as a solubilizer as well as film former for preparing ocular inserts and polyethylene glycol 400 (PEG-400) as a plasticizer. On the basis of an initial phase solubility study, the maximum concentration of Soluplus® possible was used for developing the inserts. An optimized formulation was obtained using a 32-factorial design. Two factors at three levels were used to design the ocular inserts. Soluplus® (X 1) and the plasticizer, PEG-400 (X 2), were set as the independent variables at various levels, and the Rel4h (drug release in 4 h, Y 1) and tensile strength (Y 2) were set as the dependent variables. A pre-formulation study was conducted to select suitable materials. RESULTS Various physico-chemical parameters of the optimized formulation, including the tensile strength and folding endurance, were studied using FT-IR, DSC, XRD, and SEM. An in vitro dissolution study was conducted to determine the amount of drug released. There was no redness, swelling, or watering of the rabbit eye. CONCLUSION It was concluded that the ocular inserts of the poorly soluble nepafenac developed using a graft-co-polymer enhanced the solubility and utilization of the drug for a prolonged period.
Collapse
Affiliation(s)
- Prakash N Kendre
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Pooja D Kadam
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | | | - Somnath K Vibhute
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Ajinkya K Pote
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, India
| |
Collapse
|
15
|
Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: An appealing route for customized drug delivery systems. Int J Pharm 2020; 588:119732. [DOI: 10.1016/j.ijpharm.2020.119732] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
|
16
|
ElShagea HN, ElKasabgy NA, Fahmy RH, Basalious EB. Freeze-Dried Self-Nanoemulsifying Self-Nanosuspension (SNESNS): a New Approach for the Preparation of a Highly Drug-Loaded Dosage Form. AAPS PharmSciTech 2019; 20:258. [PMID: 31332638 DOI: 10.1208/s12249-019-1472-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Febuxostat suffers from relatively low bioavailability owing to the poor drug solubility and hepatic first-pass effect. This study aimed to prepare highly drug-loaded self-nanoemulsifying self-nanosuspension systems (SNESNS). SNESNS were designed to improve febuxostat's oral bioavailability by enhancing its solubility. Different oil and surfactant/co-surfactant mixtures were used for the preparation of SNESNS. The prepared SNESNS were estimated for their particle size, in vitro drug release and transmission electron microscopy (TEM). Results revealed that the oil mixture of Capryol™ 90:Miglyol® 812 (1:1 w/w) with surfactant/co-surfactant mixture of Cremophor® RH 40/Transcutol® HP loaded with drug in 4-fold greater concentration than its saturated solubility resulted in the formation of SNESNS by dilution under the effect of magnetic stirring. SNESNS were freeze-dried using trehalose as a cryoprotectant. TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Higher Cmax and AUC0-48 values compared to those of the market product Feburic® tablets confirmed the success of the SNESNS as a promising carrier for drugs suffering from poor water solubility like febuxostat.
Collapse
|
17
|
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16:507-524. [PMID: 30957577 DOI: 10.1080/17425247.2019.1605353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A promising approach that has recently emerged to overcome the complex biobarriers and interrelated challenges associated with oral drug absorption is to combine the benefits of polymeric and lipid-based nanocarriers within one hybrid system. This multifaceted formulation strategy has given rise to a plethora of polymer-lipid hybrid (PLH) systems with varying nanostructures and biological activities, all of which have demonstrated the ability to improve the biopharmaceutical performance of a wide range of challenging therapeutics. AREAS COVERED The multitude of polymers that can be combined with lipids to exert a synergistic effect for oral drug delivery have been identified, reviewed and critically evaluated. Specific focus is attributed to preclinical studies performed within the past 5 years that have elucidated the role and mechanism of the polymer phase in altering the oral absorption of encapsulated therapeutics. EXPERT OPINION The potential of PLH systems has been clearly identified; however, improved understanding of the structure-activity relationship between PLH systems and oral absorption is fundamental for translating this promising delivery approach into a clinically relevant formulation. Advancing research within this field to identify optimal polymer, lipid combinations and engineering conditions for specific therapeutics are therefore encouraged.
Collapse
Affiliation(s)
- Sajedehsadat Maghrebi
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Paul Joyce
- c Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
18
|
Effect of Shape on Mesoporous Silica Nanoparticles for Oral Delivery of Indomethacin. Pharmaceutics 2018; 11:pharmaceutics11010004. [PMID: 30583601 PMCID: PMC6359657 DOI: 10.3390/pharmaceutics11010004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
The use of mesoporous silica nanoparticles (MSNs) in the field of oral drug delivery has recently attracted greater attention. However, there is still limited knowledge about how the shape of MSNs affects drug delivery capacity. In our study, we fabricated mesoporous silica nanorods (MSNRs) to study the shape effects of MSNs on oral delivery. MSNRs were characterized by transmission electron microscopy (TEM), nitrogen adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), and small-angle X-ray diffraction (small-angle XRD). Indomethacin (IMC), a non-steroidal anti-inflammatory agent, was loaded into MSNRs as model drug, and the drug-loaded MSNRs resulted in an excellent dissolution-enhancing effect. The cytotoxicity and in vivo pharmacokinetic studies indicated that MSNRs can be applied as a safe and efficient candidate for the delivery of insoluble drugs. The use of MSNs with a rod-like shape, as a drug delivery carrier, will extend the pharmaceutical applications of silica materials.
Collapse
|
19
|
Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. Int J Pharm 2018; 547:226-234. [PMID: 29787893 DOI: 10.1016/j.ijpharm.2018.05.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 02/05/2023]
Abstract
In this work, deacylated gellan gum and the plasticizer glycerol were used as primary components for the preparation of thin films intended for the oral delivery of therapeutic molecules. The samples were prepared by a solvent casting method and characterized for their thickness, tensile properties, swelling ability, mucoadhesion capacity and uniform drug distribution. The amount of glycerol was varied from 20% to 75% w/w in order to obtain films with tunable mechanical properties and high drug loading efficiency. The addition of glycerol was able to positively influence the mechanical characteristics of gellan gum thin film overcoming the brittleness caused by the rigid interconnection among the polymeric chains. Plasticized gellan gum films containing 50% w/w of glycerol showed optimal mechanical resistance and mucoadhesion capacity, which were adversely affected by the inclusion of higher concentrations of glycerol. On the contrary, only high amounts of the plasticizer (≥70% w/w) enabled a homogeneous distribution of the model drug fluconazole within the polymeric matrix. Overall, these results indicate that gellan gum-based thin films can be potentially used for buccal drug delivery upon precise selection of the appropriate concentration of glycerol used as a plasticizer.
Collapse
|
20
|
Improvements of theobromine pharmaceutical properties using solid dispersions prepared with newfound technologies. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Kim HS, Kim SJ, Kang JH, Shin US. Positively and Negatively Charged Collagen Nanohydrogels: pH-responsive Drug-releasing Characteristics. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan-si 330-714, South Korea, Republic of Korea
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan-si 330-714 Republic of Korea
| | - Sung-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan-si 330-714, South Korea, Republic of Korea
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan-si 330-714 Republic of Korea
| | - Ji-Hye Kang
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan-si 330-714, South Korea, Republic of Korea
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan-si 330-714 Republic of Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan-si 330-714, South Korea, Republic of Korea
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan-si 330-714 Republic of Korea
| |
Collapse
|
22
|
Malaquias LFB, Schulte HL, Chaker JA, Karan K, Durig T, Marreto RN, Gratieri T, Gelfuso GM, Cunha-Filho M. Hot Melt Extrudates Formulated Using Design Space: One Simple Process for Both Palatability and Dissolution Rate Improvement. J Pharm Sci 2017; 107:286-296. [PMID: 28847477 DOI: 10.1016/j.xphs.2017.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 01/11/2023]
Abstract
This work aimed at obtaining an optimized itraconazole (ITZ) solid oral formulation in terms of palatability and dissolution rate by combining different polymers using hot melt extrusion (HME), according to a simplex centroid mixture design. For this, the polymers Plasdone® (poly(1-vinylpyrrolidone-co-vinyl acetate) [PVP/VA]), Klucel® ELF (2-hydroxypropyl ether cellulose [HPC]), and Soluplus® (SOL, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol) were processed using a laboratory HME equipment operating without recirculation at constant temperature. Samples were characterized by physicochemical assays, as well as dissolution rate and palatability using an e-tongue. All materials became homogeneous and dense after HME processing. Thermal and structural analyses demonstrated drug amorphization, whereas IR spectroscopy evidenced drug stability and drug-excipient interactions in HME systems. Extrudates presented a significant increase in dissolution rate compared to ITZ raw material, mainly with formulations containing PVP/VA and HPC. A pronounced improvement in taste masking was also identified for HME systems, especially in those containing higher amounts of SOL and HPC. Data showed polymers act synergistically favoring formulation functional properties. Predicted best formulation should contain ITZ 25.0%, SOL 33.2%, HPC 28.9%, and PVP/VA 12.9% (w/w). Optimized response considering dissolution rate and palatability reinforces the benefit of polymer combinations.
Collapse
Affiliation(s)
- Lorena F B Malaquias
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Brasília, Federal District, Brazil
| | - Heidi L Schulte
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Brasília, Federal District, Brazil
| | - Juliano A Chaker
- Faculty of Ceilândia, University of Brasília (UnB), 72220-900 Ceilândia, Federal District, Brazil
| | - Kapish Karan
- Ashland Pharma and Nutrition, 500 Hercules Road, Wilmington, Delaware 19808
| | - Thomas Durig
- Ashland Pharma and Nutrition, 500 Hercules Road, Wilmington, Delaware 19808
| | - Ricardo N Marreto
- School of Pharmacy, Federal University of Goiás, 74 605-170 Goiânia, Goiás, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Brasília, Federal District, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Brasília, Federal District, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Brasília, Federal District, Brazil.
| |
Collapse
|
23
|
Patient-centered drug delivery and its potential applications for unmet medical needs. Ther Deliv 2017; 8:775-790. [DOI: 10.4155/tde-2017-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pharmaceutical dosage forms address diverse key components but satisfying unmet patient needs to enhance patient adherence is a major challenge. The desired design of patient-centered drug products should be based on characteristics of various components, such as patients, disease, routes of administration, drug delivery technologies and active pharmaceutical ingredients. Understanding of targeting patients and their physiological and biological environments is pivotal for developing suitable patient-centered drug products. In this review, key components of an ideal drug delivery system were considered. Then, stepwise approaches for designing patient-centered drug products were suggested. Finally, various case studies are also presented and considered to develop models of patient-centered drug products.
Collapse
|
24
|
Nam S, Lee JJ, Lee SY, Jeong JY, Kang WS, Cho HJ. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int J Pharm 2017; 526:225-234. [DOI: 10.1016/j.ijpharm.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
25
|
Pozzoli M, Traini D, Young PM, Sukkar MB, Sonvico F. Development of a Soluplus budesonide freeze-dried powder for nasal drug delivery. Drug Dev Ind Pharm 2017; 43:1510-1518. [DOI: 10.1080/03639045.2017.1321659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Michele Pozzoli
- Graduate School of Health – Pharmacy, University of Technology Sydney, Ultimo, New South Wales, Australia
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Glebe, New South Wales, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Glebe, New South Wales, Australia
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Glebe, New South Wales, Australia
| | - Maria B. Sukkar
- Graduate School of Health – Pharmacy, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Fabio Sonvico
- Graduate School of Health – Pharmacy, University of Technology Sydney, Ultimo, New South Wales, Australia
- Department of Pharmacy, University of Parma, Parma, Italy
| |
Collapse
|
26
|
Siow CRS, Wan Sia Heng P, Chan LW. Application of freeze-drying in the development of oral drug delivery systems. Expert Opin Drug Deliv 2016; 13:1595-1608. [DOI: 10.1080/17425247.2016.1198767] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Carin Ru Shan Siow
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Paul Wan Sia Heng
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Lai Wah Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Hu L, Kong D, Hu Q, Yang X, Xu H. Preparation and optimization of a novel microbead formulation to improve solubility and stability of curcumin. PARTICULATE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1080/02726351.2016.1165322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Liandong Hu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Dongqian Kong
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Qiaofeng Hu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Xun Yang
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Hongxin Xu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| |
Collapse
|
28
|
Maher EM, Ali AMA, Salem HF, Abdelrahman AA. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv 2016; 23:3088-3100. [DOI: 10.3109/10717544.2016.1153746] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eman Magdy Maher
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt,
| | - Ahmed Mahmoud Abdelhaleem Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt,
- Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia, and
| | - Heba Farouk Salem
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt,
| | | |
Collapse
|
29
|
Jin X, Zhou B, Xue L, San W. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed Pharmacother 2015; 69:388-95. [DOI: 10.1016/j.biopha.2014.12.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022] Open
|