Prakash S, Jones ML. Artificial Cell Therapy: New Strategies for the Therapeutic Delivery of Live Bacteria.
J Biomed Biotechnol 2005;
2005:44-56. [PMID:
15689638 PMCID:
PMC1138267 DOI:
10.1155/jbb.2005.44]
[Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 07/19/2004] [Accepted: 07/27/2004] [Indexed: 11/18/2022] Open
Abstract
There has been rapid growth in research regarding the use of live bacterial cells for therapeutic purposes. The recognition that these cells can be genetically engineered to synthesize products that have therapeutic potential has generated considerable interest and excitement among clinicians and health professionals. It is expected that a wide range of disease modifying substrates such as enzymes, hormones, antibodies, vaccines, and other genetic products will be used successfully and will impact upon health care substantially. However, a major limitation in the use of these bacterial cells is the complexity of delivering them to the correct target tissues. Oral delivery of live cells, lyophilized cells, and immobilized cells has been attempted but with limited success. Primarily, this is because bacterial cells are incapable of surviving passage through the gastrointestinal tract. In many occasions, when given orally, these cells have been found to provoke immunogenic responses that are undesirable. Recent studies show that these problems can be overcome by delivering live bacterial cells, such as genetically engineered cells, using artificial cell microcapsules. This review summarizes recent advances in the therapeutic use of live bacterial cells for therapy, discusses the principles of using artificial cells for the oral delivery of bacterial cells, outlines methods for preparing suitable artificial cells for this purpose, addresses potentials and limitations for their application in therapy, and provides insight for the future direction of this emergent and highly prospective technology.
Collapse