1
|
Xuan NT, Hoang NH, Nhung VP, Duong NT, Ha NH, Hai NV. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression. J Recept Signal Transduct Res 2016; 37:297-303. [PMID: 27808000 DOI: 10.1080/10799893.2016.1247862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Huy Hoang
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Vu Phuong Nhung
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Thuy Duong
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Hai Ha
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nong Van Hai
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| |
Collapse
|
2
|
Zuo L, Chuang CC, Hemmelgarn BT, Best TM. Heart failure with preserved ejection fraction: Defining the function of ROS and NO. J Appl Physiol (1985) 2015; 119:944-51. [PMID: 25977452 DOI: 10.1152/japplphysiol.01149.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
The understanding of complex molecular mechanisms underlying heart failure (HF) is constantly under revision. Recent research has paid much attention to understanding the growing number of patients that exhibit HF symptoms yet have an ejection fraction similar to a normal phenotype. Termed heart failure with preserved ejection fraction (HFpEF), this novel hypothesis traces its roots to a proinflammatory state initiated in part by the existence of comorbidities that create a favorable environment for the production of reactive oxygen species (ROS). Triggering a cascade that involves reduced nitric oxide (NO) availability, elevated ROS levels in the coronary endothelium eventually contribute to hypertrophy and increased resting tension in cardiomyocytes. Improved understanding of the molecular pathways associated with HFpEF has led to studies that concentrate on reducing ROS production in the heart, boosting NO availability, and increasing exercise capacity for HFpEF patients. This review will explore the latest research into the role of ROS and NO in the progression of HFpEF, as well as discuss the encouraging results of numerous therapeutic studies.
Collapse
Affiliation(s)
- Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Benjamin T Hemmelgarn
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health & Performance Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
3
|
Kovacic P, Somanathan R. Cell signaling, receptors, electrical effects and therapy in circadian rhythm. J Recept Signal Transduct Res 2013; 33:267-75. [PMID: 23914781 DOI: 10.3109/10799893.2013.822890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythm has been the object of much attention. This review addresses the aspects of cell signaling, receptors, therapy and electrical effects in a multifaceted fashion. The pineal gland, which produces the important hormones melatonin and serotonin, exerts a prominent influence, in addition to the supraschiasmatic nucleus. Many aspects involve free radicals which have played a widespread role in biochemistry.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego , CA , USA and
| | | |
Collapse
|
4
|
Lo KY, Zhu Y, Tsai HF, Sun YS. Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. BIOMICROFLUIDICS 2013; 7:64108. [PMID: 24396542 PMCID: PMC3862592 DOI: 10.1063/1.4836675] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) are known to be a key factor in the development of cancer, and many exogenous sources are supposed to be related to the formation of ROS. In this paper, a microfluidic chip was developed for studying the production of ROS in lung cancer cells under different chemical and physical stimuli. This chip has two unique features: (1) five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 are achieved in the culture regions; (2) a shear stress gradient is produced inside each of the five culture areas. Lung cancer cells were seeded inside this biocompatible chip for investigating their response to different concentrations of H2O2, a chemical stimulus known to increase the production of ROS. Then the effect of shear stress, a physical stimulus, on lung cancer cells was examined, showing that the production of ROS was increased in response to a larger shear stress. Finally, two antioxidants, α-tocopherol and ferulic acid, were used to study their effects on reducing ROS. It was found that high-dose α-tocopherol was not able to effectively eliminate the ROS produced inside cells. This counter effect was not observed in cells cultured in a traditional chamber slide, where no shear stress was present. This result suggests that the current microfluidic chip provides an in vitro platform best mimicking the physiological condition where cells are under circulating conditions.
Collapse
Affiliation(s)
- Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Yun Zhu
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Hsieh-Fu Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
5
|
Ren L, Yan D, Zhong W. Enhanced enzyme activity through electron transfer between single-walled carbon nanotubes and horseradish peroxidase. CARBON 2012; 50:1303-1310. [PMID: 22228910 PMCID: PMC3249833 DOI: 10.1016/j.carbon.2011.10.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Better understanding of electron transfer (ET) taking place at the nano-bio interface can guide design of more effective functional materials used in fuel cells, biosensors, and medical devices. Single-walled carbon nanotube (SWCNT) coupled with biological enzymes serves as a model system for studying the ET mechanism, as demonstrated in the present study. SWCNT enhanced the activity of horseradish peroxidase (HRP) in the solution-based redox reaction by binding to HRP at a site proximate to the enzyme's activity center and participating in the ET process. ET to and from SWCNT was clearly observable using near-infrared spectroscopy. The capability of SWCNT in receiving electrons and the direct attachment of HRP to the surface of SWCNT strongly affected the enzyme activity due to the direct involvement of SWCNT in ET.
Collapse
Affiliation(s)
- Lei Ren
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Dong Yan
- Center for Nanoscale Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- Corresponding Author. Tel: +1 951 8274925.
| |
Collapse
|
6
|
Kovacic P. Novel electrostatic mechanism for mode of action by N-acetylated proteins: cell signaling and phosphorylation. J Recept Signal Transduct Res 2011; 31:193-8. [PMID: 21619447 DOI: 10.3109/10799893.2011.577784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although extensive literature exists for N-acetylated proteins, scant knowledge is available concerning resultant mode of action. This review presents a novel mechanism based on electrostatics and cell signaling. There is substantial increase in the amide dipole and electrostatic field (EF) in contrast with the primary amino of the lysine precursor. The EF might serve as a bridge in electron transfer and cell signaling or energetics may play a role. The relationship between N-acetylation and phosphorylation is addressed. EFs may be important in the case of phosphates. Involvement of cell signaling is addressed including mechanistic aspects. As is the case for many aspects of bioaction, an integrated approach involving electrochemistry and cell signaling seems reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
7
|
Tsentsevitsky A, Nikolsky E, Giniatullin R, Bukharaeva E. Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience 2011; 189:93-9. [PMID: 21627983 DOI: 10.1016/j.neuroscience.2011.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS) are potent regulators of transmitter release in chemical synapses, but the mechanism of this action remains almost unknown. Presynaptic modulation can change either the release probability or the time course of quantal release, which was recently recognized as an efficient mechanism determining synaptic efficiency. The nonuniform structure and a big size of the frog neuromuscular junction make it a useful model to study the action of ROS in compartments different in release probability and in time course of transmitter release. The time course (or kinetics) of quantal release could be estimated by measuring the dispersion of the synaptic delays for evoked uniquantal endplate currents (EPCs) under low release probability. Using two-electrode recording technique, the action of ROS on kinetics and release probabilities were studied at the proximal and distal parts within the same neuromuscular junction. The stable ROS hydrogen peroxide (H2O2) increased the dispersion of synaptic delays of EPCs (i.e. desynchronized quantal release) within the distal part but decreased delay dispersion (synchronized quantal release) within the proximal part of the same synapse. Unlike the opposite modulation of kinetics, H2O2 reduced release probability in both distal and proximal parts. Since ATP is released from motor nerve terminals together with acetylcholine and can be involved in ROS signaling, we tested the presynaptic action of ATP. In the presence of the pro-oxidant Fe2+, extracellular ATP, similarly to H2O2, induced significant desynchronization of release in the distal regions. The antioxidant N-acetyl-cysteine attenuated the inhibitory action of ATP on release probability and abolished the action of H2O2 and ATP in the presence of Fe2+, on release kinetics. Our data suggest that ROS induced during muscle activity could change the time course of transmitter release along the motor nerve terminal to provide fine tuning of synaptic efficacy.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | | | | | | |
Collapse
|
8
|
Kovacic P, Somanathan R. Novel, unifying mechanism for aromatic primary-amines (therapeutics, carcinogens and toxins): electron transfer, reactive oxygen species, oxidative stress and metabolites. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00233j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Kovacic P, Somanathan R. Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:86-100. [PMID: 20716933 DOI: 10.4161/oxim.3.2.11147] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA, USA.
| | | |
Collapse
|
10
|
Kovacic P, Somanathan R. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 2010; 30:214-26. [DOI: 10.3109/10799893.2010.488650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|