1
|
Zemskov EA, Zemskova MA, Wu X, Moreno Caceres S, Caraballo Delgado D, Yegambaram M, Lu Q, Fu P, Wang T, Black SM. Novel mechanism of cyclic nucleotide crosstalk mediated by PKG-dependent proteasomal degradation of the Hsp90 client protein phosphodiesterase 3A. J Biol Chem 2024; 300:107723. [PMID: 39214301 PMCID: PMC11497409 DOI: 10.1016/j.jbc.2024.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Endothelial cAMP-specific phosphodiesterase PDE3A is one of the major negative regulators of the endothelial barrier function in acute lung injury models. However, the mechanisms underlying its regulation still need to be fully resolved. We show here that the PDE3A is a newly described client of the molecular chaperone heat shock protein 90 (hsp90). In endothelial cells (ECs), hsp90 inhibition by geldanamycin (GA) led to a disruption of the hsp90/PDE3A complex, followed by a significant decrease in PDE3A protein levels. The decrease in PDE3A protein levels was ubiquitin-proteasome-dependent and required the activity of the E3 ubiquitin ligase C terminus of Hsc70-interacting protein. GA treatment also enhanced the association of PDE3A with hsp70, which partially prevented PDE3A degradation. GA-induced decreases in PDE3A protein levels correlated with decreased PDE3 activity and increased cAMP levels in EC. We also demonstrated that protein kinase G-dependent phosphorylation of PDE3A at Ser654 can signal the dissociation of PDE3A from hsp90 and PDE3A degradation. This was confirmed by endogenous PDE3A phosphorylation and degradation in 8-Br-cGMP- or 8-CPT-cGMP- and Bay 41-8543-stimulated EC and comparisons of WT- and phospho-mimic S654D mutant PDE3A protein stability in transiently transfected HEK293 cells. In conclusion, we have identified a new mechanism of PDE3A regulation mediated by the ubiquitin-proteasome system. Further, the degradation of PDE3A is controlled by the phosphorylation of S654 and the interaction with hsp90. We speculate that targeting the PDE3A/hsp90 complex could be a therapeutic approach for acute lung injury.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Marina A Zemskova
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Santiago Moreno Caceres
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - David Caraballo Delgado
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - Qing Lu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA.
| |
Collapse
|
2
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ghorbani A, Zand H. A new mechanistic approach for cancer fighting of resveratrol. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Prostaglandin EP2 receptor signaling protects human trabecular meshwork cells from apoptosis induced by ER stress through down-regulation of p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2322-32. [PMID: 27321910 DOI: 10.1016/j.bbamcr.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/04/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
Abstract
E-prostanoid receptor subtype 2 (EP2) agonists are currently under clinical development as hypotensive agents for the treatment of ocular hypertension. However, the effects of EP2 receptor agonists on trabecular meshwork (TM) alterations leading to primary open-angle glaucoma (POAG) are still unknown. Here, we evaluated whether EP2 receptor activation exhibits protective functions on TM cell death induced by endoplasmic reticulum (ER) stress. We show that the EP2 receptor agonist butaprost protects TM cell death mediated by the ER stress inducer tunicamycin through a cyclic AMP (cAMP)-dependent mechanism, but independent of the classical cAMP sensors, protein kinase A and exchange proteins activated by cAMP. The ER stress-induced intrinsic apoptosis inhibited by the EP2 receptor agonist was correlated with a decreased accumulation of the cellular stress sensor p53. In addition, p53 down-regulation was associated with inhibition of its transcriptional activity, which led to decreased expression of the pro-apoptotic p53-upregulated modulator of apoptosis (PUMA). The stabilization of p53 by nutlin-3a abolished butaprost-mediated cell death protection. In conclusion, we showed that EP2 receptor activation protects against ER stress-dependent mitochondrial apoptosis through down-regulation of p53. The specific inhibition of this pathway could reduce TM alterations observed in POAG patients.
Collapse
|
5
|
Human monocyte recognition of adenosine-based cyclic dinucleotides unveils the A2a Gαs protein-coupled receptor tonic inhibition of mitochondrially induced cell death. Mol Cell Biol 2014; 35:479-95. [PMID: 25384972 DOI: 10.1128/mcb.01204-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclic dinucleotides are important messengers for bacteria and protozoa and are well-characterized immunity alarmins for infected mammalian cells through intracellular binding to STING receptors. We sought to investigate their unknown extracellular effects by adding cyclic dinucleotides to the culture medium of freshly isolated human blood cells in vitro. Here we report that adenosine-containing cyclic dinucleotides induce the selective apoptosis of monocytes through a novel apoptotic pathway. We demonstrate that these compounds are inverse agonist ligands of A2a, a Gαs-coupled adenosine receptor selectively expressed by monocytes. Inhibition of monocyte A2a by these ligands induces apoptosis through a mechanism independent of that of the STING receptors. The blockade of basal (adenosine-free) signaling from A2a inhibits protein kinase A (PKA) activity, thereby recruiting cytosolic p53, which opens the mitochondrial permeability transition pore and impairs mitochondrial respiration, resulting in apoptosis. A2a antagonists and inverse agonist ligands induce apoptosis of human monocytes, while A2a agonists are antiapoptotic. In vivo, we used a mock developing human hematopoietic system through NSG mice transplanted with human CD34(+) cells. Treatment with cyclic di-AMP selectively depleted A2a-expressing monocytes and their precursors via apoptosis. Thus, monocyte recognition of cyclic dinucleotides unravels a novel proapoptotic pathway: the A2a Gαs protein-coupled receptor (GPCR)-driven tonic inhibitory signaling of mitochondrion-induced cell death.
Collapse
|
6
|
Safa M, Mousavizadeh K, Noori S, Pourfathollah A, Zand H. cAMP protects acute promyelocytic leukemia cells from arsenic trioxide-induced caspase-3 activation and apoptosis. Eur J Pharmacol 2014; 736:115-23. [PMID: 24815320 DOI: 10.1016/j.ejphar.2014.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
More recently, arsenic trioxide (ATO), was integrated into acute promyelocytic leukemia (APL) treatment, showing high efficacy and tolerability in patients with both ATRA-sensitive and ATRA-resistant APL. ATO could induce apoptosis at relatively high concentrations (0.5 to 2.0 micromol/L) and partial differentiation at low concentrations (0.1 to 0.5 micromol/L) in leukemic promyelocytes. It is known that cAMP agonists enhance low-dose ATO-induced APL cells differentiation. Less well appreciated was the possible interaction between relatively high-doses of ATO and enhanced levels of cAMP in APL cells. Here, we show that elevation of cAMP levels by forskolin inhibited ATO-mediated apoptosis in APL-derived NB4 cells, and this inhibition could be averted by cell permeable cAMP-dependent protein kinase inhibitor (14-22) amide. Inactivating phosphorylation of the proapoptotic protein Bad at Ser118 and phosphorylation of the CREB proto-oncogene at Ser133 were observed upon elevation of cAMP levels in NB4 cells. Phosphorylation of these PKA target proteins is known to promote cell survival in AML cells. The ability of cAMP to endow the APL cells with survival advantage is of particular importance when cAMP agonists may be considered as adjuncts to APL therapy.
Collapse
Affiliation(s)
- Majid Safa
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kazem Mousavizadeh
- Oncopathology Research Center, and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shekoofeh Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Pourfathollah
- Department of Medical Laboratory Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- National Institute and Faculty of Nutrition and Food Technology, Department of Molecular Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kelly AD, Breitkopf SB, Yuan M, Goldsmith J, Spentzos D, Asara JM. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS One 2011; 6:e25357. [PMID: 21984915 PMCID: PMC3184969 DOI: 10.1371/journal.pone.0025357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/01/2011] [Indexed: 01/23/2023] Open
Abstract
The relatively new field of onco-metabolomics attempts to identify relationships between various cancer phenotypes and global metabolite content. Previous metabolomics studies utilized either nuclear magnetic resonance spectroscopy or gas chromatography/mass spectrometry, and analyzed metabolites present in urine and serum. However, direct metabolomic assessment of tumor tissues is important for determining altered metabolism in cancers. In this respect, the ability to obtain reliable data from archival specimens is desirable and has not been reported to date. In this feasibility study, we demonstrate the analysis of polar metabolites extracted directly from ten formalin-fixed, paraffin-embedded (FFPE) specimens, including five soft tissue sarcomas and five paired normal samples. Using targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) via selected reaction monitoring (SRM), we detect an average of 106 metabolites across the samples with excellent reproducibility and correlation between different sections of the same specimen. Unsupervised hierarchical clustering and principal components analysis reliably recovers a priori known tumor and normal tissue phenotypes, and supervised analysis identifies candidate metabolic markers supported by the literature. In addition, we find that diverse biochemical processes are well-represented in the list of detected metabolites. Our study supports the notion that reliable and broadly informative metabolomic data may be acquired from FFPE soft tissue sarcoma specimens, a finding that is likely to be extended to other malignancies.
Collapse
Affiliation(s)
- Andrew D. Kelly
- Division of Hematology/Oncology, Sarcoma Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanne B. Breitkopf
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jeffrey Goldsmith
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|