1
|
Lagasse E, Levin M. Future medicine: from molecular pathways to the collective intelligence of the body. Trends Mol Med 2023; 29:687-710. [PMID: 37481382 PMCID: PMC10527237 DOI: 10.1016/j.molmed.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The remarkable anatomical homeostasis exhibited by complex living organisms suggests that they are inherently reprogrammable information-processing systems that offer numerous interfaces to their physiological and anatomical problem-solving capacities. We briefly review data suggesting that the multiscale competency of living forms affords a new path for biomedicine that exploits the innate collective intelligence of tissues and organs. The concept of tissue-level allostatic goal-directedness is already bearing fruit in clinical practice. We sketch a roadmap towards 'somatic psychiatry' by using advances in bioelectricity and behavioral neuroscience to design methods that induce self-repair of structure and function. Relaxing the assumption that cellular control mechanisms are static, exploiting powerful concepts from cybernetics, behavioral science, and developmental biology may spark definitive solutions to current biomedical challenges.
Collapse
Affiliation(s)
- Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration. BIOLOGY 2022; 11:biology11030413. [PMID: 35336787 PMCID: PMC8945199 DOI: 10.3390/biology11030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Exosomes are biological nanoparticles recently recognized as intercellular messengers. They contain a cargo of lipids, proteins, and RNA. They can transfer their content to not only cells in the vicinity but also to cells at a distance. This unique ability empowers them to modulate the physiology of recipient cells. In brain, exosomes play a role in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease and amyotrophic lateral sclerosis. Abstract Exosomes of endosomal origin are one class of extracellular vesicles that are important in intercellular communication. Exosomes are released by all cells in our body and their cargo consisting of lipids, proteins and nucleic acids has a footprint reflective of their parental origin. The exosomal cargo has the power to modulate the physiology of recipient cells in the vicinity of the releasing cells or cells at a distance. Harnessing the potential of exosomes relies upon the purity of exosome preparation. Hence, many methods for isolation have been developed and we provide a succinct summary of several methods. In spite of the seclusion imposed by the blood–brain barrier, cells in the CNS are not immune from exosomal intrusive influences. Both neurons and glia release exosomes, often in an activity-dependent manner. A brief description of exosomes released by different cells in the brain and their role in maintaining CNS homeostasis is provided. The hallmark of several neurodegenerative diseases is the accumulation of protein aggregates. Recent studies implicate exosomes’ intercellular communicator role in the spread of misfolded proteins aiding the propagation of pathology. In this review, we discuss the potential contributions made by exosomes in progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Understanding contributions made by exosomes in pathogenesis of neurodegeneration opens the field for employing exosomes as therapeutic agents for drug delivery to brain since exosomes do cross the blood–brain barrier.
Collapse
|
3
|
Guidolin D, Anderlini D, Marcoli M, Cortelli P, Calandra-Buonaura G, Woods AS, Agnati LF. A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3136. [PMID: 31466374 PMCID: PMC6747255 DOI: 10.3390/ijerph16173136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022]
Abstract
Humans are increasingly aware that their fate will depend on the wisdom they apply in interacting with the ecosystem. Its health is defined as the condition in which the ecosystem can deliver and continuously renew its fundamental services. A healthy ecosystem allows optimal interactions between humans and the other biotic/abiotic components, and only in a healthy ecosystem can humans survive and efficiently reproduce. Thus, both the human and ecosystem health should be considered together in view of their interdependence. The present article suggests that this relationship could be considered starting from the Hippocrates (460 BC-370 BC) work "On Airs, Waters, and Places" to derive useful medical and philosophical implications for medicine which is indeed a topic that involves scientific as well as philosophical concepts that implicate a background broader than the human body. The brain-body-ecosystem medicine is proposed as a new more complete approach to safeguarding human health. Epidemiological data demonstrate that exploitation of the environment resulting in ecosystem damage affects human health and in several instances these diseases can be detected by modifications in the heart-brain interactions that can be diagnosed through the analysis of changes in heart rate variability.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, 35122 Padova, Italy
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane 4072, Australia.
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, 16126 Genoa, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Amina S Woods
- Structural Biology Unit, National Institutes of Health, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD 9000, USA
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
4
|
Agnati LF, Guidolin D, Maura G, Marcoli M. Functional roles of three cues that provide nonsynaptic modes of communication in the brain: electromagnetic field, oxygen, and carbon dioxide. J Neurophysiol 2017; 119:356-368. [PMID: 29070628 DOI: 10.1152/jn.00413.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The integrative actions of the brain depend on the exchange of information among its computational elements. Hence, this phenomenon plays the key role in driving the complex dynamics of the central nervous system, in which true computations interact with noncomputational dynamical processes to generate brain representations of the body and of the body in the external world, and hence the finalistic behavior of the organism. In this context, it should be pointed out that, besides the intercellular interactions mediated by classical electrochemical signals, other types of interactions, namely, "cues" and "coercions," also appear to be exploited by the system to achieve its function. The present review focuses mainly on cues present in the environment and on those produced by cells of the body, which "pervade" the brain and contribute to its dynamics. These cues can also be metabolic substrates, and, in most cases, they are of fundamental importance to brain function and the survival of the entire organism. Three of these highly pervasive cues will be analyzed in greater detail, namely, oxygen, carbon dioxide, and electromagnetic fields (EMF). Special emphasis will be placed on EMF, since several authors have suggested that these highly pervasive energy fluctuations may play an important role in the global integrative actions of the brain; hence, EMF signaling may transcend classical connectionist models of brain function. Thus the new concept of "broadcasted neuroconnectomics" has been introduced, which transcends the current connectomics view of the brain.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Diagnostics, Clinical Medicine and Public Health, University of Modena and Reggio Emilia , Modena , Italy.,Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Diego Guidolin
- Department of Neuroscience, University of Padova , Padua , Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova , Genoa , Italy
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova , Genoa , Italy
| |
Collapse
|
5
|
Khlaifia A, Matias I, Cota D, Tell F. Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information. J Physiol 2017; 595:3267-3285. [PMID: 28233325 DOI: 10.1113/jp273484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Vagal sensory inputs transmit information from the viscera to brainstem neurones located in the nucleus tractus solitarii to set physiological parameters. These excitatory synapses exhibit a CB1 endocannabinoid-induced long-term depression (LTD) triggered by vagal fibre stimulation. We investigated the impact of nutritional status on long-term changes in this long-term synaptic plasticity. Food deprivation prevents LTD induction by disrupting CB1 receptor signalling. Short-term refeeding restores the capacity of vagal synapses to express LTD. Ghrelin and cholecystokinin, respectively released during fasting and refeeding, play a key role in the control of LTD via the activation of energy sensing pathways such as AMPK and the mTOR and ERK pathways. ABSTRACT Communication form the viscera to the brain is essential to set physiological homoeostatic parameters but also to drive more complex behaviours such as mood, memory and emotional states. Here we investigated the impact of the nutritional status on long-term changes in excitatory synaptic transmission in the nucleus tractus solitarii, a neural hub integrating visceral signals. These excitatory synapses exhibit a CB1 endocannabinoid (eCB)-induced long-term depression (LTD) triggered by vagal fibre stimulation. Since eCB signalling is known to be an important component of homoeostatic regulation of the body and is regulated during various stressful conditions, we tested the hypothesis that food deprivation alters eCB signalling in central visceral afferent fibres. Food deprivation prevents eCB-LTD induction due to the absence of eCB signalling. This loss was reversed by blockade of ghrelin receptors. Activation of the cellular fuel sensor AMP-activated protein kinase or inhibition of the mechanistic target of rapamycin pathway abolished eCB-LTD in free-fed rats. Signals associated with energy surfeit, such as short-term refeeding, restore eCB-LTD induction, which in turn requires activation of cholecystokinin receptors and the extracellular signal-regulated kinase pathway. These data suggest a tight link between eCB-LTD in the NTS and nutritional status and shed light on the key role of eCB in the integration of visceral information.
Collapse
Affiliation(s)
- Abdessattar Khlaifia
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, 51 Boulevard Pierre Dramard, 13344, Marseille, France
| | - Isabelle Matias
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France
| | - Fabien Tell
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, 51 Boulevard Pierre Dramard, 13344, Marseille, France
| |
Collapse
|
6
|
Agnati LF, Marcoli M, Leo G, Maura G, Guidolin D. Homeostasis and the concept of 'interstitial fluids hierarchy': Relevance of cerebrospinal fluid sodium concentrations and brain temperature control (Review). Int J Mol Med 2017; 39:487-497. [PMID: 28204813 PMCID: PMC5360360 DOI: 10.3892/ijmm.2017.2874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
In this review, the aspects and further developments of the concept of homeostasis are discussed also in the perspective of their possible impact in the clinical practice, particularly as far as psychic homeostasis is concerned. A brief historical survey and comments on the concept of homeostasis and allostasis are presented to introduce our proposal that is based on the classical assumption of the interstitial fluid (ISF) as the internal medium for multicellular organisms. However, the new concept of a hierarchic role of ISF of the various organs is introduced. Additionally, it is suggested that particularly for some chemico‑physical parameters, oscillatory rhythms within their proper set‑ranges should be considered a fundamental component of homeostasis. Against this background, we propose that the brain ISF has the highest hierarchic role in human beings, providing the optimal environment, not simply for brain cell survival, but also for brain complex functions and the oscillatory rhythms of some parameters, such as cerebrospinal fluid sodium and brain ISF pressure waves, which may play a crucial role in brain physio‑pathological states. Thus, according to this proposal, the brain ISF represents the real internal medium since the maintenance of its dynamic intra-set-range homeostasis is the main factor for a free and independent life of higher vertebrates. Furthermore, the evolutionary links between brain and kidney and their synergistic role in H2O/Na balance and brain temperature control are discussed. Finally, it is surmised that these two interrelated parameters have deep effects on the Central Nervous System (CNS) higher integrative actions such those linked to psychic homeostasis.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Giuseppina Leo
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Guido Maura
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Diego Guidolin
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
7
|
Affiliation(s)
- Lesley E. Smythies
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John R. Smythies
- Center for Brain and Cognition, University of California San Diego, San Diego, CA, USA
| |
Collapse
|