1
|
Directing Stem Cell Commitment by Amorphous Calcium Phosphate Nanoparticles Incorporated in PLGA: Relevance of the Free Calcium Ion Concentration. Int J Mol Sci 2020; 21:ijms21072627. [PMID: 32283864 PMCID: PMC7177725 DOI: 10.3390/ijms21072627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
The microenvironment of mesenchymal stem cells (MSCs) is responsible for the modulation in MSC commitment. Nanocomposites with an inorganic and an organic component have been investigated, and osteogenesis of MSCs has been attributed to inorganic phases such as calcium phosphate under several conditions. Here, electrospun meshes and two-dimensional films of poly(lactic-co-glycolic acid) (PLGA) or nanocomposites of PLGA and amorphous calcium phosphate nanoparticles (PLGA/aCaP) seeded with human adipose-derived stem cells (ASCs) were analyzed for the expression of selected marker genes. In a two-week in vitro experiment, osteogenic commitment was not found to be favored on PLGA/aCaP compared to pure PLGA. Analysis of the medium revealed a significant reduction of the Ca2+ concentration when incubated with PLGA/aCaP, caused by chemical precipitation of hydroxyapatite (HAp) on aCaP seeds of PLGA/aCaP. Upon offering a constant Ca2+ concentration, however, the previously observed anti-osteogenic effect was reversed: alkaline phosphatase, an early osteogenic marker gene, was upregulated on PLGA/aCaP compared to pristine PLGA. Hence, in addition to the cell–material interaction, the material–medium interaction was also important for the stem cell commitment here, affecting the cell–medium interaction. Complex in vitro models should therefore consider all factors, as coupled impacts might emerge.
Collapse
|
2
|
Naudot M, Barre A, Caula A, Sevestre H, Dakpé S, Mueller AA, Devauchelle B, Testelin S, Marolleau JP, Le Ricousse S. Co-transplantation of Wharton's jelly mesenchymal stem cell-derived osteoblasts with differentiated endothelial cells does not stimulate blood vessel and osteoid formation in nude mice models. J Tissue Eng Regen Med 2020; 14:257-271. [PMID: 31713308 DOI: 10.1002/term.2989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022]
Abstract
A major challenge in bone tissue engineering is the lack of post-implantation vascular growth into biomaterials. In the skeletal system, blood vessel growth appears to be coupled to osteogenesis-suggesting the existence of molecular crosstalk between endothelial cells (ECs) and osteoblastic cells. The present study (performed in two murine ectopic models) was designed to determine whether co-transplantation of human Wharton's jelly mesenchymal stem cell-derived osteoblasts (WJMSC-OBs) and human differentiated ECs enhances bone regeneration and stimulates angiogenesis, relative to the seeding of WJMSC-OBs alone. Human WJMSC-OBs and human ECs were loaded into a silicate-substituted calcium phosphate (SiCaP) scaffold and then ectopically implanted at subcutaneous or intramuscular sites in nude mice. At both subcutaneous and intramuscular implantation sites, we observed ectopic bone formation and osteoids composed of host cells when WJMSC-OBs were seeded into the scaffold. However, the addition of ECs was associated with a lower level of osteogenesis, and we did not observe stimulation of blood vessel ingrowth. in vitro studies demonstrated that WJMSC-OBs lost their ability to secrete vascular endothelial growth factor and stromal cell-derived factor 1-including when ECs were present. In these two murine ectopic models, our cell-matrix environment combination did not seem to be optimal for inducing vascularized bone reconstruction.
Collapse
Affiliation(s)
- Marie Naudot
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
| | - Anaïs Barre
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
| | - Alexandre Caula
- Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Henri Sevestre
- Service d'anatomie et de cytology pathologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Stéphanie Dakpé
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,Institut Faire Faces, Amiens, France
| | - Andreas Albert Mueller
- Department of Cranio-Maxillofacial Surgery, University and University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, Regenerative Medicine and Oral Health Technologies, University of Basel, Allschwil, Switzerland
| | - Bernard Devauchelle
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,Institut Faire Faces, Amiens, France
| | - Sylvie Testelin
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,Institut Faire Faces, Amiens, France
| | - Jean Pierre Marolleau
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,EA 4666, HEMATIM, University of Picardie Jules Verne, Amiens, France
| | - Sophie Le Ricousse
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Institut Faire Faces, Amiens, France
| |
Collapse
|