1
|
Hemmati F, Valian N, Ahmadiani A, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Hosseini Shirazi SF. Insulin and TLR4 Inhibitor Improve Motor Impairments in a Rat Model of Parkinson's Disease. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144200. [PMID: 39830652 PMCID: PMC11742580 DOI: 10.5812/ijpr-144200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 01/22/2025]
Abstract
Background Insulin resistance is an important pathological hallmark of Parkinson's disease (PD). Proinflammatory cytokines during neuroinflammation decrease insulin sensitivity by suppressing insulin signaling elements. Toll-like receptor 4 (TLR4), the main receptor involved in neuroinflammation, is also associated with the pathogenesis of PD. Objectives The present study evaluated the effect of insulin, an insulin receptor antagonist, and a TLR4 inhibitor on behavioral deficits and insulin resistance induced by 6-hydroxydopamine (6-OHDA). Methods Male Wistar rats were divided into nine groups: (1) sham (normal saline [NS] in the medial forebrain bundle [MFB]); (2) 6-OHDA (20 µg in the MFB); (3) 6-OHDA + NS; (4) 6-OHDA + dimethyl sulfoxide (DMSO); (5) 6-OHDA + insulin (2.5 IU/day, intracerebroventricular ([ICV]); (6) 6-OHDA + insulin (5 IU/day, intranasal [IN]); (7) 6-OHDA + insulin receptor antagonist (S961; 6.5 nM/kg, ICV); (8) 6-OHDA + TLR4 inhibitor (TAK242; 0.01 µg/rat, ICV); (9) 6-OHDA + insulin + TLR4 inhibitor. All treatments were administered for seven consecutive days. Motor performance was evaluated using apomorphine-induced rotation and cylinder tests. Gene expression and protein levels of α-synuclein, TLR4, insulin receptor substrate (IRS) 1, IRS2, and glycogen synthase kinase 3β (GSK3β) were measured by real-time PCR and western blotting, respectively, in the striatum. Results Insulin, alone and with TAK242, improved motor deficits induced by 6-OHDA. Administration of the insulin receptor antagonist had no effect on motor deficits. The increased expression of α-synuclein and TLR4 following 6-OHDA was attenuated by insulin and TAK242. GSK3β levels, both mRNA and protein, were significantly increased by 6-OHDA and attenuated with insulin and TAK242. Conclusions The findings suggest that 6-OHDA induces neurodegeneration via activation of TLR4 and GSK3β, indicating insulin resistance, and that insulin can improve these impairments. Moreover, TLR4 inhibition prevents insulin signaling dysfunction and improves behavioral and molecular impairments, highlighting the critical role of TLR4 in the development of insulin resistance in PD pathology.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Raymond Azman Ali
- Department of Medicine, University Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, University Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Seyed Farshad Hosseini Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dilnashin H, Birla H, Keswani C, Singh SS, Zahra W, Rathore AS, Singh R, Keshri PK, Singh SP. Neuroprotective Effects of Tinospora cordifolia via Reducing the Oxidative Stress and Mitochondrial Dysfunction against Rotenone-Induced PD Mice. ACS Chem Neurosci 2023; 14:3077-3087. [PMID: 37579290 DOI: 10.1021/acschemneuro.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
3
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
4
|
Ramalingam M, Jeong HS, Hwang J, Cho HH, Kim BC, Kim E, Jang S. Autophagy Signaling by Neural-Induced Human Adipose Tissue-Derived Stem Cell-Conditioned Medium during Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 23:4193. [PMID: 35457010 PMCID: PMC9031864 DOI: 10.3390/ijms23084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson's disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Eungpil Kim
- Jeonnam Biopharmaceutical Research Center, Hwasun 58141, Korea;
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| |
Collapse
|
5
|
Neuronal SH2B1 attenuates apoptosis in an MPTP mouse model of Parkinson's disease via promoting PLIN4 degradation. Redox Biol 2022; 52:102308. [PMID: 35390677 PMCID: PMC8987406 DOI: 10.1016/j.redox.2022.102308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
The incidence of Parkinson's disease (PD) has increased tremendously, especially in the aged population and people with metabolic dysfunction; however, its underlying molecular mechanisms remain unclear. SH2B1, an intracellular adaptor protein, contributes to the signal transduction of several receptor tyrosine kinases and exerts beneficial metabolic effects for body weight regulation; however, whether SH2B1 plays a major role in pathological neurodegeneration in PD has not yet been investigated. This study aimed to investigate the effects of SH2B1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–induced PD mice with Sh2b1 deficiency or neuron-specific Sh2b1 overexpression. Cellular and molecular mechanisms were elucidated using human dopaminergic neuron SH-SY5Y cells analysed. We found that SH2B1 expression was confirmed to be downregulated in the blood samples of PD patients and in the brains of mice with MPTP-induced chronic PD. Sh2b1 deficiency caused marked exacerbation of behavioural defects and increased neuronal apoptosis in MPTP-treated mice, whereas restoration of neuron-specific Sh2b1 expression significantly reversed these effects. Similar results were observed in MPP + -treated SH-SY5Y cells. Mechanistically, upon binding to heat shock cognate 70 (HSC70), SH2B1 promotes HSC70-related recognition and PLIN4 lysosomal translocation and degradation, thus suppressing lipid peroxidation stress in the brains of PD mice. Adeno-associated virus-mediated rescue of neuronal HSC70 expression functionally alleviated the neuropathology of PD in wild-type but not in Sh2b1-deficient mice. This is the first study to examine the molecular underpinnings of SH2B1 against MPTP-induced neurodegeneration through cell autonomous promotion of neuronal survival in an in vivo PD model. Our findings reveal that SH2B1 antagonizes neurodegenerative pathology in PD via the SH2B1–HSC70–PLIN4 axis.
Brain tissues, especially in TH+ neurons, of PD mice showed low SH2B1 expression. SH2B1 suppressed MPTP-induced neurodegeneration by inhibiting neuronal apoptosis. SH2B1 overexpression protected against MPP + -induced cell death via HSC70. SH2B1 interacts with HSC70 to form a complex that regulates PLIN4 degradation.
Collapse
|
6
|
Cardoso S, Moreira PI. Antidiabetic drugs for Alzheimer's and Parkinson's diseases: Repurposing insulin, metformin, and thiazolidinediones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:37-64. [PMID: 32854858 DOI: 10.1016/bs.irn.2020.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medical and scientific communities have been striving to disentangle the complexity of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD), in order to develop a cure or effective treatment for these diseases. Along this journey, it has become important to identify the early events occurring in the prodromal phases of these diseases and the disorders that increase the risk of neurodegeneration highlighting common pathological features. This strategy has led to a wealth of evidence identifying diabetes, mainly type 2 diabetes mellitus (T2DM) as a main risk factor for the onset and progression of AD and PD. Impaired glucose metabolism, insulin resistance, and mitochondrial dysfunction are features common to both type 2 diabetes mellitus (T2DM), and AD and PD, and they appear before clinical diagnosis of the two neurodegenerative diseases. These could represent the strategic nodes of therapeutic intervention. Following this line of thought, a conceivable approach is to repurpose antidiabetic drugs as valuable agents that may prevent or reduce the risk of cognitive decline and neurodegeneration. This review summarizes the past and current findings that link AD and PD with T2DM, emphasizing the common pathological mechanisms. The efficacy of antidiabetic drugs, namely intranasal insulin, metformin, and thiazolidinediones, in the prevention and/or treatment of AD and PD is also discussed.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Physiology-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Rea S, Della-Morte D, Pacifici F, Capuani B, Pastore D, Coppola A, Arriga R, Andreadi A, Donadel G, Di Daniele N, Bellia A, Lauro D. Insulin and Exendin-4 Reduced Mutated Huntingtin Accumulation in Neuronal Cells. Front Pharmacol 2020; 11:779. [PMID: 32547392 PMCID: PMC7270204 DOI: 10.3389/fphar.2020.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Patients with diabetes mellitus (DM) are more prone to develop cognitive decline and neurodegenerative diseases. A pathological association between an autosomal dominant neurological disorder caused by brain accumulation in mutated huntingtin (mHTT), known as Huntington disease (HD), and DM, has been reported. By using a diabetic mouse model, we previously suggested a central role of the metabolic pathways of HTT, further suggesting the relevance of this protein in the pathology of DM. Furthermore, it has also been reported that intranasal insulin (Ins) administration improved cognitive function in patients with neurodegenerative disorders such as Alzheimer disease, and that exendin-4 (Ex-4) enhanced lifespan and ameliorated glucose homeostasis in a mouse model of HD. Although antioxidant properties have been proposed, the underlying molecular mechanisms are still missing. Therefore, the aim of the present study was to investigate the intracellular pathways leading to neuroprotective effect of Ins and Ex-4 hypoglycemic drugs by using an in vitro model of HD, developed by differentiated dopaminergic neurons treated with the pro-oxidant neurotoxic compound 6-hydroxydopamine (6-ohda). Our results showed that 6-ohda increased mHTT expression and reduced HTT phosphorylation at Ser421, a post-translational modification, which protects against mHTT accumulation. Pre-treatment with Ins or Ex-4 reverted the harmful effect induced by 6-ohda by activating AKT1 and SGK1 kinases, and by reducing the phosphatase PP2B. AKT1 and SGK1 are crucial nodes on the Ins activation pathway and powerful antioxidants, while PP2B dephosphorylates HTT contributing to mHTT neurotoxic effect. In conclusion, present results highlight that Ins and Ex-4 may counteract the neurotoxic effect induced by mHTT, opening novel pharmacological therapeutic strategies against neurodegenerative disorders, with the main focus on HD, still considered an orphan illness.
Collapse
Affiliation(s)
- Silvia Rea
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Rome, Italy.,Department of Neurology, Miller School of Medicine, The Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, United States
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Li N, Wu Y, Zhu L, Huang Y, Liu Z, Shi M, Soltys D, Zhang J, Chang Q. Extracellular microvesicles-derived from microglia treated with unaggregated α-synuclein attenuate mitochondrial fission and toxicity-induced by Parkinsonian toxin MPP+. Biochem Biophys Res Commun 2019; 517:642-647. [DOI: 10.1016/j.bbrc.2019.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|
9
|
Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci 2019; 13:868. [PMID: 31474827 PMCID: PMC6706784 DOI: 10.3389/fnins.2019.00868] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
The advances in medicine, together with lifestyle modifications, led to a rising life expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-associated chronic pathologies, including neurodegenerative and metabolic diseases. Interestingly, a non-negligible interplay between alterations of glucose homeostasis and brain dysfunction has clearly emerged. In particular, epidemiological studies have pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has a detrimental influence on PD, negatively affecting PD phenotype, accelerating its progression and worsening cognitive impairment. This review aims to provide an exhaustive analysis of the most recent evidences supporting the key role of insulin resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain, working as pro-survival neurotrophic factor and as a master regulator of neuronal mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine signaling and of alpha-synuclein degradation will be described in details, too. The intriguing idea that shared deregulated pathogenic pathways represent a link between PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing studies about the promising healing potential of common antidiabetic drugs such as metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be summarized and the rationale for their use to decelerate neurodegeneration will be critically assessed.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
10
|
Qu M. The Neuroprotective Effect of Steroid Receptor Coactivator-Interacting Protein (SIP) in Astrocyte Model of 1-Methyl-4-Phenylpyridinium (MPP⁺)-Induced Parkinson's Disease. Med Sci Monit 2019; 25:5776-5784. [PMID: 31376345 PMCID: PMC6690214 DOI: 10.12659/msm.912106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The purpose of this study was to investigate the role and mechanism of steroid receptor coactivator-interacting protein (SIP) in an astrocyte model of 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson’s disease. Material/Methods To perform our study, a Parkinson’s disease cell model was established by treating the rat glioblastoma cell line C6 with MPP+. SIP was overexpressed in C6 cells using SIP-plasmid. Cell viability and apoptosis were analyzed using MTT assay and flow cytometer respectively. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels were detected using enzyme linked immunosorbent assay and quantitative reverse transcription PCR. Besides, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, and superoxide dismutase (SOD) enzyme activity were determined in the present study. For protein and mRNA detection, western blot assay, and qRT-PCR were performed respectively. Results SIP was decreased in MPP+-induced C6 cells. SIP overexpression relieved MPP+-induced cytotoxicity of C6 cells, displayed as increased cell viability and reduced cell apoptosis and reduced LDH release. Besides, SIP inhibited MPP+-induced inflammatory response and oxidative stress, evidenced by decreased levels of inflammatory factors (TNF-α and IL-1β), reduced ROS generation and enhanced SOD activity. Moreover, MPP+-induced nuclear factor-κB activation was inhibited by SIP overexpression. Conclusions SIP was downregulated in Parkinson’s disease and it played a protective role in the development Parkinson’s disease, thus may be a promising target for Parkinson’s disease treatment.
Collapse
Affiliation(s)
- Mingwei Qu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| |
Collapse
|
11
|
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res 2019; 35:775-795. [PMID: 30707354 DOI: 10.1007/s12640-019-0003-y] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Disruption of Akt and Erk-mediated signal transduction significantly contributes in the pathogenesis of various neurodegenerative diseases (NDs), such as Parkinson's disease, Alzheimer's diseases, Huntington's disease, and many others. These regulatory proteins serve as the regulator of cell survival, motility, transcription, metabolism, and progression of the cell cycle. Therefore, targeting Akt and Erk pathway has been proposed as a reasonable approach to suppress ND progression. This review has emphasized on involvement of Akt/Erk cascade in the neurodegeneration. Akt has been reported to regulate neuronal toxicity through its various substrates like FOXos, GSK3β, and caspase-9 etc. Akt is also involved with PI3K in signaling pathway to mediate neuronal survival. ERK is another kinase which also regulates proliferation, differentiation, and survival of the neural cell. There has also been much progress in developing a therapeutic molecule targeting Akt and Erk signaling. Therefore, improved understanding of the molecular mechanism behind the regulatory aspect of Akt and Erk networks can make strong impact on exploration of the neurodegenerative disease pathogenesis.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- BDNF, brain-derived neurotrophic factor
- HD, Huntington disease
- MAPK, mitogen-activated protein-extracellular kinase
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NDs, neurodegenerative disorders
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- PD, Parkinson’s disease
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Ramalingam M, Cheng MH, Kim SJ. Insulin suppresses MPP+-induced neurotoxicity by targeting integrins and syndecans in C6 astrocytes. J Recept Signal Transduct Res 2017; 37:550-559. [DOI: 10.1080/10799893.2017.1369119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mahesh Ramalingam
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Mi Hyun Cheng
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul, South Korea
| |
Collapse
|