1
|
Hopkins KJ, Wang G, Schmued LC. Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res 2000; 864:69-80. [PMID: 10793188 DOI: 10.1016/s0006-8993(00)02137-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The excitatory amino acid glutamate has been implicated in the neurodegeneration associated with several different central nervous system diseases. Treatment with kainic acid (KA), a glutamate analog known to activate the AMPA/KA subtype of glutamate receptor, has been widely used as a model of epilepsy. Long term temporal studies of its neuropathological effects, however, are lacking. In this study, two techniques were used to directly visualize and characterize the neuropathology that occurred over a 2-month period following KA-induced status epilepticus in adult female Sprague-Dawley rats. Post-injection survival was 2, 4, 8 h, 2 days, 2 weeks, or 2 months. Labeling with Fluoro-Jade B (FJB), a fluorescent green dye that labels the cell body, dendrites, axons and axon terminals of degenerating neurons, was observed within the cortex, hippocampus, thalamus, basal ganglia, and amygdala by 4 h post-treatment. The highest level of labeling was seen in the piriform cortex, hippocampus, and thalamus. Myelin changes in the rat forebrain following KA treatment were also examined using the myelin-specific Black-Gold (BG) stain. Varicose myelinated fibers were observed in the same regions as FJB positive neurons, although these changes were evident by the 2-h survival time-point. Both stains showed a temporal progression of brain damage throughout the affected areas. By 2 months post-treatment, few degenerating neurons could be detected and abnormal myelin was absent in most regions. As myelin changes can be seen prior to neuronal degeneration, and oligodendrocytes express functional AMPA/kainate-type glutamate receptors, the neurodegeneration and myelin pathologies may occur as independent events. Thus, researchers should consider the temporal and multiple effects of kainic acid to optimize conditions for their endpoint of interest when designing experiments.
Collapse
Affiliation(s)
- K J Hopkins
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, USA.
| | | | | |
Collapse
|
2
|
Schmued LC, Scallet AC, Slikker W. Domoic acid-induced neuronal degeneration in the primate forebrain revealed by degeneration specific histochemistry. Brain Res 1995; 695:64-70. [PMID: 8574649 DOI: 10.1016/0006-8993(95)00799-v] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Domoic acid is a potent excitotoxin produced by diatoms which is subsequently passed along the marine food chain. Its chemical structure and toxicological properties are similar to kainic acid. Like kainic acid, exposure results in extensive hippocampal degeneration. The effect of domoic acid on other primate brain structures, however, is less resolved. In an attempt to clarify this issue, the present study applied a degeneration specific histochemical technique (de Olmos' cupric-silver method) to reveal degeneration within the brains of domoic acid-dosed cynomolgus monkeys. Degenerating neuronal cell bodies and terminals were found not only within the hippocampus, but also within a number of other 'limbic' structures including the entorhinal cortex, the subiculum, the piriform cortex, the lateral septum, and the dorsal lateral nucleus of the thalamus. Although the hippocampus is a component of the original limbic circuit of Papez, other components such as the mammillary bodies, the anterior nucleus of the thalamus and the cingulate cortex contained no degeneration, while a number of more recently documented efferent targets of the hippocampal formation revealed extensive degeneration. The pattern of degeneration generally correlated with those regions containing high densities of kainate receptors.
Collapse
Affiliation(s)
- L C Schmued
- Division of Neurotoxicology, Food and Drug Administration, Jefferson, AR 72079-9502, USA
| | | | | |
Collapse
|
3
|
Panigrahy A, White WF, Rava LA, Kinney HC. Developmental changes in [3H]kainate binding in human brainstem sites vulnerable to perinatal hypoxia-ischemia. Neuroscience 1995; 67:441-54. [PMID: 7675177 DOI: 10.1016/0306-4522(95)00016-c] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human brainstem is especially susceptible to hypoxia-ischemia in early life. To test the hypothesis that the period of vulnerability of the developing human brainstem to hypoxia-ischemia correlates with a transient elevation in kainate receptor binding, we compared the quantitative distribution of [3H]kainate binding in brainstem nuclei between four fetuses (19-26 gestational weeks), four infants (one to nine months), and three "mature" individuals (one child and two adults) without neurological disease. Quantitative tissues autoradiography was used. [3H]Kainate binding decreased in all brainstem regions from early life to maturity with the most significant decreases occurring in nuclei thought to be especially vulnerable to perinatal hypoxia-ischemia (e.g. principal inferior olive, griseum pontis, inferior colliculus and reticular core). The highest binding in the fetal and infant period was found primarily in the major cerebellar-relay nuclei. In the inferior olive and arcuate nucleus, binding increased from the fetal to the infant period, and then fell 50-61% to low mature levels. In the griseum pontis, binding decreased 60% between the fetal and mature periods. In the reticular formation, binding fell 67-78% from the fetal to mature period. These data support a correlation between the period of brainstem vulnerability to hypoxia-ischemia in early life to transient elevation in kainate binding, and are particularly relevant to the topographic brainstem patterns in perinatal hypoxia-ischemia of infantile olivary gliosis, pontosubicular necrosis and reticular core damage. Striking localization of [3H]kainate binding to rhombic lip derivatives further suggests that kainate receptors may be involved in the development and function of human brainstem-cerebellar circuitry.
Collapse
Affiliation(s)
- A Panigrahy
- Department of Neurology, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
4
|
Good PF, Morrison JH. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey. J Comp Neurol 1995; 357:25-35. [PMID: 7673466 DOI: 10.1002/cne.903570104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de Nó (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.
Collapse
Affiliation(s)
- P F Good
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
5
|
Scallet AC, Binienda Z, Caputo FA, Hall S, Paule MG, Rountree RL, Schmued L, Sobotka T, Slikker W. Domoic acid-treated cynomolgus monkeys (M. fascicularis): effects of dose on hippocampal neuronal and terminal degeneration. Brain Res 1993; 627:307-13. [PMID: 8298975 DOI: 10.1016/0006-8993(93)90335-k] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Domoic acid is a tricarboxylic amino acid (structurally related to kainic acid and glutamic acid) that is found in the environment as a contaminant of some seafood. To determine the nature of any neurological damage caused by domoate, as well as the minimum neurotoxic dose, juvenile and adult monkeys were dosed intravenously with domoate at one of a range of doses from 0.25 to 4 mg/kg. When animals were perfused one week later, histochemical staining using a silver method to reveal degenerating axons and cell bodies showed two distinct types of hippocampal lesions. One lesion, termed 'Type A', was a small focal area of silver grains restricted to CA2 stratum lucidum, the site of greatest kainic acid receptor concentration in the brain. Type A lesions occurred over a dose range of 0.5 to 2.0 mg/kg in juvenile animals and 0.5 to 1.0 mg/kg in adult animals. No mortality occurred in any of the juvenile monkeys, but one juvenile animal that received 4.0 mg/kg sustained a second type of lesion, termed 'Type B', characterized by widespread damage to pyramidal neurons and axon terminals of CA4, CA3, CA2, CA1, and subiculum subfields of the hippocampus. Doses of more than 1.0 mg/kg in the adult monkeys either proved lethal or resulted in Type B lesions. Induction of c-fos protein had occurred in the hippocampal dentate gyrus and CA1 regions of moribund animals perfused within hours of their initial dose.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A C Scallet
- Division of Neurotoxicology, FDA/National Center for Toxicological Research, Jefferson, AR 72079
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jansen KL, Faull RL, Dragunow M, Leslie RA. Distribution of excitatory and inhibitory amino acid, sigma, monoamine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex. Brain Res 1991; 566:225-38. [PMID: 1726061 DOI: 10.1016/0006-8993(91)91703-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoradiography was used to visualise N-methyl-D-aspartate, phencyclidine, strychnine-insensitive glycine, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, kainic acid, benzodiazepine, gamma-aminobutyric acid type A, sigma, serotonergic, dopaminergic, alpha 2-adrenergic, beta-adrenergic, muscarinic cholinergic, nicotinic, opioid, neurotensin, substance P, adenosine A1 and neuropeptide Y receptors in the human primary motor (Brodmann's area 4) and somatosensory cortex (Brodmann's areas 3, 2 and 1). With the exception of serotonin type 2 receptors, all receptor types examined had a similar distribution in area 4 which showed little dependence on the underlying distribution of cell somata, often continuing unaltered through the somatosensory cortex despite marked cytoarchitectural changes. The highest densities occurred in the outer (most superficial) 30-40% of the cortical grey matter, followed by a band of relatively low binding and then moderate levels in the inner (deeper) region. In many instances, an additional band of dense binding could be discerned in the region of laminae IV/Va running unbroken through both gyri. The distribution of most receptor types in the somatosensory cortex also followed this pattern, except for opioid and kainic acid receptors which showed higher levels in the inner rather than the outer third of this region. At the edge of area 4, a change occurred such that a high density outer band appeared, giving these receptor types the same pattern in area 4 as the majority. Serotonin type 2 receptor levels were quite low in the outermost region of area 4, although the pattern was otherwise similar to that of the other receptors. Thus, with the exception of serotonin receptors, the similarity in many binding site distributions recently noted in area 4 of the rhesus monkey also tends to occur in the human area 4, to the extent that 2 ligands will reverse their usual cortical binding pattern to conform with the common area 4 pattern.
Collapse
MESH Headings
- Autoradiography
- Humans
- Middle Aged
- Motor Cortex/metabolism
- Neuropeptide Y/metabolism
- Neurotensin/metabolism
- Organ Specificity
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/metabolism
- Receptors, Cholinergic/metabolism
- Receptors, GABA-A/metabolism
- Receptors, Neurokinin-1
- Receptors, Neuropeptide Y
- Receptors, Neurotensin
- Receptors, Neurotransmitter/metabolism
- Receptors, Opioid/metabolism
- Receptors, Purinergic/metabolism
- Receptors, Serotonin/metabolism
- Somatosensory Cortex/metabolism
- Substance P/metabolism
- Tritium
Collapse
Affiliation(s)
- K L Jansen
- Anatomy Department, University of Auckland Medical School, New Zealand
| | | | | | | |
Collapse
|
7
|
Cincotta M, Summers RJ, Beart PM. Biochemical characterization of an autoradiographic method for studying excitatory amino acid receptors using L-[3H]glutamate. Anal Biochem 1989; 177:150-5. [PMID: 2568102 DOI: 10.1016/0003-2697(89)90030-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A method was developed for radiolabeling excitatory amino acid receptors of rat brain with L-[3H]glutamate. Effective labeling of glutamate receptors in slide-mounted 10-microns sections was obtained using a low incubation volume (0.15 ml) and rapid washing: a procedure where high ligand concentrations were achieved with minimal waste. Saturation experiments using [3H]glutamate revealed a single binding site of micromolar affinity. The Bmax was trebled in the presence of Ca2+ (2.5 mM) and Cl- (20 mM) with no change in the Kd. Binding was rapid, saturable, stereospecific, and sensitive to glutamate receptor agonists. The proportions of [3H]glutamate binding sensitive to N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were 34, 54, and 51%, respectively. NMDA inhibited binding at a distinct subset of L-[3H]glutamate sites, whereas AMPA and kainate competed for some common sites. Labeling of sections with L-[3H]glutamate in the presence of the selective agonists allowed autoradiographic visualization of glutamate receptor subtypes in brain tissue.
Collapse
Affiliation(s)
- M Cincotta
- University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Austin Hospital, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
8
|
Jansen KL, Faull RL, Dragunow M. Excitatory amino acid receptors in the human cerebral cortex: a quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine, L-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites. Neuroscience 1989; 32:587-607. [PMID: 2557558 DOI: 10.1016/0306-4522(89)90282-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The excitatory amino acids are probably the major neurotransmitters in the cerebral cortex, and they act through at least three receptors: the N-methyl-D-aspartate, the quisqualate and the kainic acid receptors. Under the appropriate conditions, [3H]1-(1-(2-thienyl)-cyclohexyl)piperidine [( 3H]TCP), [3H]glycine and L-[3H]glutamate label different sites on the N-methyl-D-aspartate receptor, [3H]-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid [( 3H]AMPA) labels the quisqualate receptor and [3H]kainic acid the kainic acid receptor. The anatomical localizations of these binding sites were studied in sections of blocks removed from the cerebral cortices of eight post-mortem human brains. The results showed that, in the human cerebral cortex, [3H]TCP, [3H]glycine and L-[3H]glutamate binding sites had congruent distributions, with [3H]AMPA binding sites showing a similar distribution. In the hippocampus, these four ligands had high binding site densities in the CA1 region and the dentate gyrus molecular layer. With the exception of the striate cortex, in the neocortex, a tri-laminar pattern was seen consisting of a high density across laminae I-III, a layer of low density corresponding to the region of lamina IV, and a band of moderate density across laminae V and VI, except for [3H]AMPA where the middle zone of low density was usually wider. [3H]Kainic acid showed a binding pattern which was generally complementary to that of the other four ligands. There were low levels of [3H]kainic acid binding sites in the CA1 region of the hippocampus with higher levels in the CA3 region, the hilus, and the inner third of the dentate gyrus molecular layer. In the neocortex there was a band of high density corresponding to laminae V and VI, with a thin band of moderate binding corresponding to lamina I and the outer region of lamina II. An exception was the motor cortex where the highest level of [3H]kainic acid binding was in laminae I and II. The high degree of congruence between the binding patterns of [3H]TCP, [3H]glycine and L-[3H]glutamate (using conditions appropriate for the N-methyl-D-aspartate receptor) supports data indicating that these ligands bind to different regions of the same receptor complex. The similar distribution of [3H]AMPA binding sites, with the exception of the striate cortex, supports observations made in rodents that N-methyl-D-aspartate receptors and quisqualate receptors have similar distributions and perform different but related functions in excitatory transmission.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K L Jansen
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | |
Collapse
|