1
|
El-Wakil N, Kamel R, Mahmoud AA, Dufresne A, Abouzeid RE, Abo El-Fadl M, Maged A. Risedronate-loaded aerogel scaffolds for bone regeneration. Drug Deliv 2023; 30:51-63. [PMID: 36474425 PMCID: PMC9937015 DOI: 10.1080/10717544.2022.2152135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sugarcane bagasse-derived nanofibrillated cellulose (NFC), a type of cellulose with a fibrous structure, is potentially used in the pharmaceutical field. Regeneration of this cellulose using a green process offers a more accessible and less ordered cellulose II structure (amorphous cellulose; AmC). Furthermore, the preparation of cross-linked cellulose (NFC/AmC) provides a dual advantage by building a structural block that could exhibit distinct mechanical properties. 3D aerogel scaffolds loaded with risedronate were prepared in our study using NFC or cross-linked cellulose (NFC/AmC), then combined with different concentrations of chitosan. Results proved that the aerogel scaffolds composed of NFC and chitosan had significantly improved the mechanical properties and retarded drug release compared to all other fabricated aerogel scaffolds. The aerogel scaffolds containing the highest concentration of chitosan (SC-T3) attained the highest compressive strength and mean release time values (415 ± 41.80 kPa and 2.61 ± 0.23 h, respectively). Scanning electron microscope images proved the uniform highly porous microstructure of SC-T3 with interconnectedness. All the tested medicated as well as unmedicated aerogel scaffolds had the ability to regenerate bone as assessed using the MG-63 cell line, with the former attaining a higher effect than the latter. However, SC-T3 aerogel scaffolds possessed a lower regenerative effect than those composed of NFC only. This study highlights the promising approach of the use of biopolymers derived from agro-wastes for tissue engineering.
Collapse
Affiliation(s)
- Nahla El-Wakil
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| | - Azza A. Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt,CONTACT Azza A. Mahmoud Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Alain Dufresne
- CNRS, Grenoble INP, LGP2, Université Grenoble Alpes, Grenoble, France
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Mahmoud T. Abo El-Fadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt,Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
2
|
Noureen S, Noreen S, Ghumman SA, Abdelrahman EA, Batool F, Aslam A, Mehdi M, Shirinfar B, Ahmed N. A novel pH-responsive hydrogel system based on Prunus armeniaca gum and acrylic acid: Preparation and evaluation as a potential candidate for controlled drug delivery. Eur J Pharm Sci 2023; 189:106555. [PMID: 37543064 DOI: 10.1016/j.ejps.2023.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
pH-responsive hydrogels have become effective and attractive materials for the controlled release of drugs at pre-determined destinations. In the present study, a novel hydrogel system based on Prunus armeniaca gum (PAG) and acrylic acid (AA) was prepared by a free radical mechanism using N, N-methylene bisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. A series of hydrogels varying PAG, AA, and MBA concentration was developed to determine the impact of these components. Formulated hydrogels were characterized for pH-responsive swelling, drug release, gel content, and porosity. Structural analysis was performed by FTIR, XRD, and SEM analysis. TGA study was applied to assess thermal stability. Oral acute toxicity and in vivo drug release were performed in rabbits. Hydrogels exhibited pH-dependent swelling and drug release. Swelling, drug loading and release, and porosity increased by increasing PAG and AA concentration while decreased by increasing MBA. The gel content of formulations was increased by increasing all three components. FTIR studies confirmed the development of copolymeric networks and the loading of drug. XRD studies revealed that hydrogels were amorphous, and the crystalline drug was changed into an amorphous form during loading. TGA results indicated that hydrogels were stable up to 600 °C. Acute oral toxicity results confirm that hydrogels were nontoxic up to a dose of 2 g/kg body weight in rabbits. The pharmacokinetic evaluation revealed that hydrogels prolonged the availability of the drug and the peak plasma concentration of the drug was obtained in 6 h as compared to the oral solution of the drug. Tramadol hydrochloride (THC) was used as a model drug. Hence, pH-responsive swelling and release, nontoxic nature and improved pharmacokinetics support that PAG-based hydrogels may be considered as potential controlled-release polymeric carriers.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | | | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Afeefa Aslam
- Department Of Pharmacy, Comsats University, Abbottabad 22020, Pakistan
| | - Muhammad Mehdi
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Bahareh Shirinfar
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|
3
|
Kamel R, Afifi SM, Abdou AM, Esatbeyoglu T, AbouSamra MM. Nanolipogel Loaded with Tea Tree Oil for the Management of Burn: GC-MS Analysis, In Vitro and In Vivo Evaluation. Molecules 2022; 27:molecules27196143. [PMID: 36234697 PMCID: PMC9570711 DOI: 10.3390/molecules27196143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The GC-MS analysis of tea tree oil (TTO) revealed 38 volatile components with sesquiterpene hydrocarbons (43.56%) and alcohols (41.03%) as major detected classes. TTO efficacy is masked by its hydrophobicity; nanoencapsulation can address this drawback. The results showed that TTO-loaded solid lipid nanoparticles (SLN1), composed of glyceryl monostearate (2% w/w) and Poloxamer188 (5% w/w), was spherical in shape with a core-shell microstructure. TTO-SLN1 showed a high entrapment efficiency (96.26 ± 2.3%), small particle size (235.0 ± 20.4 nm), low polydispersity index (0.31 ± 0.01), and high negative Zeta potential (−32 mV). Moreover, it exhibited a faster active agent release (almost complete within 4 h) compared to other formulated TTO-SLNs as well as the plain oil. TTO-SLN1 was then incorporated into cellulose nanofibers gel, isolated from sugarcane bagasse, to form the ‘TTO-loaded nanolipogel’ which had a shear-thinning behavior. Second-degree thermal injuries were induced in Wistar rats, then the burned skin areas were treated daily for 7 days with the TTO-loaded nanolipogel compared to the unmedicated nanolipogel, the TTO-loaded conventional gel, and the normal saline (control). The measurement of burn contraction proved that TTO-loaded nanolipogel exhibited a significantly accelerated skin healing, this was confirmed by histopathological examination as well as quantitative assessment of inflammatory infiltrate. This study highlighted the success of the proposed nanotechnology approach in improving the efficacy of TTO used for the repair of skin damage induced by burns.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: or (R.K.); (T.E.); Tel.: +201113639193 (R.K.); +49-511-762-5589 (T.E.)
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Amr M. Abdou
- Department of Microbiology and Immunology, National Research Centre, Cairo 12622, Egypt
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: or (R.K.); (T.E.); Tel.: +201113639193 (R.K.); +49-511-762-5589 (T.E.)
| | - Mona M. AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
4
|
Ibrahim N, Abbas H, El-Sayed NS, Gad HA. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep 2022; 12:13102. [PMID: 35907916 PMCID: PMC9338973 DOI: 10.1038/s41598-022-16592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55–66.13 nm), homogenous distribution (PDI of 0.207–0.249), and negatively charged Zeta potential (− 13.4 to − 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Gad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. .,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Noureen S, Noreen S, Ghumman SA, Batool F, Hameed H, Hasan S, Noreen F, Elsherif MA, Bukhari SNA. Prunus armeniaca Gum-Alginate Polymeric Microspheres to Enhance the Bioavailability of Tramadol Hydrochloride: Formulation and Evaluation. Pharmaceutics 2022; 14:pharmaceutics14050916. [PMID: 35631501 PMCID: PMC9144292 DOI: 10.3390/pharmaceutics14050916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Combinations of polymers can improve the functional properties of microspheres to achieve desired therapeutic goals. Hence, the present study aimed to formulate Prunus armeniaca gum (PAG) and sodium alginate microsphere for sustained drug release. Blended and coated microspheres were prepared using the ionotropic gelation technique. The effect of polymer concentration variation was studied on the structural and functional properties of formulated microspheres. FTIR, XRD, and thermal analysis were performed to characterize the microspheres. All the formulations were well-formed spherical beads having an average diameter from 579.23 ± 07.09 to 657.67 ± 08.74 μm. Microspheres entrapped drugs within the range 65.86 ± 0.26–83.74 ± 0.79%. The pH-dependent swelling index of coated formulations was higher than blended. FTIR spectra confirmed the presence of characteristic peaks of entrapped Tramadol hydrochloride showing no drug-polymer interaction. In vitro drug release profile showed sustained release following the Korsmeyer-Peppas kinetic model with an R2 value of 0.9803–0.9966. An acute toxicology study employing the oral route in Swiss albino mice showed no signs of toxicity. It can be inferred from these results that blending PAG with sodium alginate can enhance the stability of alginate microspheres and improve its drug release profile by prolonging the release time.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Fozia Noreen
- Department of Chemistry, University of Sialkot, Sialkot 51010, Pakistan;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| |
Collapse
|
6
|
Yermak IM, Gorbach VI, Karnakov IA, Davydova VN, Pimenova EA, Chistyulin DА, Isakov VV, Glazunov VP. Carrageenan gel beads for echinochrome inclusion: Influence of structural features of carrageenan. Carbohydr Polym 2021; 272:118479. [PMID: 34420738 DOI: 10.1016/j.carbpol.2021.118479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
Carrageenan (CRG) and carrageenan/chitosan (CH) gel beads (CRG/CH) were prepared as a release delivery system for echinochrome A (Ech). According to spectral data, the Ech was dispersed in the polymer matrix, interacted with CRG, was not oxidised, and remained stable after encapsulation in CRG beads. Carrageenan beads containing Ech were coated with CH by layering. The influence of the structural features of CRG on the formation of beads and the beads morphology, swelling behaviour, mucoadhesive properties and drug release were evaluated. The polysaccharide matrices with Ech showed different swelling characteristics depending on the pH of the medium and the structure of the CRG used. The slow drug release from polysaccharide matrixes was observed for κ- and κ/β-CRG beads, that contained 3,6-anhydro-α-d-galactopyranose units and had high molecular weight. The obtained results showed the prospects of using polysaccharide beads to include Ech.
Collapse
Affiliation(s)
- Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation.
| | - Vladimir I Gorbach
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Ivan A Karnakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Viktoria N Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Evgeniya A Pimenova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far-Eastern Branch of the Russian Academy of Sciences, Palchevskogo ul. 17, 690041, Russian Federation
| | - Dmitry А Chistyulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Vladimir V Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Valery P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
7
|
Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. Topical cellulose nanocrystals-stabilized nanoemulgel loaded with ciprofloxacin HCl with enhanced antibacterial activity and tissue regenerative properties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Kamel R, Elmotasem H, Abdelsalam E, Salama A. Lepidium sativum seed oil 3D nano-oleogel for the management of diabetic wounds: GC/MS analysis, in-vitro and in-vivo studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Kamel R, Salama A, Shaffie NM, Salah NM. Cerebral effect of optimized Allium sativum oil-loaded chitosan nanorods: GC-MS analysis and in vitro/in vivo evaluation. Food Funct 2021; 11:5357-5376. [PMID: 32463028 DOI: 10.1039/c9fo02911g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The chemical constituents of Allium sativum (garlic) oil were investigated using the GC/MS technique after silylation, and the presence of several fatty acids and their esters was revealed. The most dominant was 9,12-octadecadienoic acid (linoleic acid), a precursor of arachidonic acid, which is essential for brain development. Garlic oil-loaded chitosan nanoparticles (GCNs) were prepared to enhance its cerebral effects, and to mask its odor and taste. Two-level orthogonal factorial design, followed by regression analysis, was used to study the influence of different formulation variables. GCN3, the formula with the smallest particle size and the highest mucoadhesion, was selected as the optimized one. Transmission electron microscopy showed that GCN3 has a short nanorod-shape outline. We aimed to investigate the influence of orally administered GCN3 compared to the plain garlic oil (GO), on ciprofloxacin-induced (CPX) neurotoxicity in rats and the probable underlying mechanisms. The results show the significantly higher neurological curative effect of GCN3 compared to GO, and its greater antidepression-like and antianxiety-like potential via the alteration of brain neurotransmitter levels and inhibition of oxidative stress and inflammatory pathways. The histopathological examination showed the higher capability of GCN3 to repair the damage induced by CPX in the cerebral cortex, hippocampus area and substantia nigra brain sections. Similar results were proved immunohistochemically using Cox-2 antibody. The nanoencapsulation of GO represents a promising strategy for brain-targeting.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, El-Bohooth Street, Giza (P.O. 12622), Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Giza, Egypt
| | | | - Nesma M Salah
- Chemistry of Natural Products Department, National Research Centre, Egypt
| |
Collapse
|
10
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
11
|
Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int J Biol Macromol 2020; 165:2550-2564. [PMID: 33115647 DOI: 10.1016/j.ijbiomac.2020.10.175] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Demand for safe, environmentally friendly and minimally processed food additives with intrinsic technological (stabilizing, texturizing, structuring) and functional potential is already on the rise. There are actually several natural excipients eligible for pharmaceutical formulation. Mucilage, as a class constitutes arabinoxylan and rhamnogalacturonan-based biomolecules used in the pharmaceutical, environmental as well as phytoremediation industries owing to its particular structure and properties. These compounds are widely used in pharmaceutical, food and cosmetics, as well as, in agriculture, paper industries. This review emphasizes mucilage valuable applications in the pharmaceutical and industrial fields. In this context, much focus has recently been given to the valorization of mucilage as an ingredient for food or nutraceutical applications. Furthermore, different optimization and extraction techniques are presented to develop better utilization and/or enhanced yield of mucilage. The highlighted mucilage extraction methods warrant assessing up-scale processes to encourage for its industrial applications. The current article capitalizes on cutting-edge characteristics of mucilage and posing for other possible innovative applications in non-food industries. Here, the first holistic overview of mucilage with regards to its physicochemical properties and potential novel usages is presented.
Collapse
|
12
|
Kamel R, El-batanony R, Salama A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int J Pharm 2019; 570:118667. [DOI: 10.1016/j.ijpharm.2019.118667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
13
|
Abbas H, Kamel R. Potential role of resveratrol-loaded elastic sorbitan monostearate nanovesicles for the prevention of UV-induced skin damage. J Liposome Res 2019; 30:45-53. [DOI: 10.1080/08982104.2019.1580721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Cairo, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, Pharmaceutical Industry Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018; 198:385-400. [PMID: 30093014 DOI: 10.1016/j.carbpol.2018.06.086] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Carrageenan is a class of naturally occurring sulphated polysaccharides, which is currently a promising candidate in tissue engineering and regenerative medicine as it resemblances native glycosaminoglycans. From pharmaceutical drug formulations to tissue engineered scaffolds, carrageenan has broad range of applications. Here we provide an overview of developing various forms of carrageenan based hydrogels. We focus on how these fabrication processes has an effect on physiochemical properties of the hydrogel. We outline the application of these hydrogels not only pertaining to sustained drug release but also their application in bone and cartilage tissue engineering as well as in wound healing and antimicrobial formulations. Administration of these hydrogels through various routes for drug delivery applications has been critically reviewed. Finally, we conclude by summarizing the current and future outlook that promotes the seaweed-derived polysaccharide as versatile, promising biomaterial for a variety of bioengineering applications.
Collapse
Affiliation(s)
- Ramanathan Yegappan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vignesh Selvaprithiviraj
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
15
|
Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination. Drug Deliv Transl Res 2018. [DOI: 10.1007/s13346-018-0506-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Kamel R, Abbas H. A multi-microcarrier of metronidazole-biopolymers complexes as a potential vaginal delivery system. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1320660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rabab Kamel
- Department of Pharmaceutical Technology, National Research Center, Cairo, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Damanhour University, Damanhur, Egypt
| |
Collapse
|
17
|
Rutin nanostructured lipid cosmeceutical preparation with sun protective potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:59-66. [DOI: 10.1016/j.jphotobiol.2015.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/27/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022]
|
18
|
Volod'ko AV, Davydova VN, Chusovitin E, Sorokina IV, Dolgikh MP, Tolstikova TG, Balagan SA, Galkin NG, Yermak IM. Soluble chitosan-carrageenan polyelectrolyte complexes and their gastroprotective activity. Carbohydr Polym 2013; 101:1087-93. [PMID: 24299878 DOI: 10.1016/j.carbpol.2013.10.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 11/17/2022]
Abstract
The soluble polyelectrolyte complexes (PEC) κ-carrageenan (κ-CG):chitosan was obtained. Binding constant value (2.11 × 10(7)mol(-1)) showed high affinity of κ-CG to chitosan. The complex formation of κ-CG:chitosan 1:10 and 10:1 w/w was shown by centrifugation in a Percoll gradient. Using atomic force microscopy we showed that the supramolecular structure of the complexes is different from each other and from the macromolecular structure of the initial polysaccharides. The gastroprotective and anti-ulcerogenic effect of κ-CG, chitosan and their complexes was investigated on the model of stomach ulcers induced by indometacin in rats. PEC κ-CG:chitosan have gastroprotective properties which depend on their composition. Complex κ-CG:chitosan 1:10 w/w possesses higher gastroprotective activity than the complex 10:1 w/w. These results suggest that the gastroprotective effect of complexes can be associated with their protective layer on the surface of the mucous membrane of a stomach, which avoids a direct contact with the ulcerogenic agent.
Collapse
Affiliation(s)
- A V Volod'ko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|