1
|
Liu GW, Pickett MJ, Kuosmanen JLP, Ishida K, Madani WAM, White GN, Jenkins J, Park S, Feig VR, Jimenez M, Karavasili C, Lal NB, Murphy M, Lopes A, Morimoto J, Fitzgerald N, Cheah JH, Soule CK, Fabian N, Hayward A, Langer R, Traverso G. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. NATURE MATERIALS 2024; 23:1292-1299. [PMID: 38413810 PMCID: PMC11364503 DOI: 10.1038/s41563-024-01811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria from gastric acid-mediated deactivation. Overall, LIFT hydrogels may expand access to advanced therapeutics for patients with difficulty swallowing.
Collapse
Affiliation(s)
- Gary W Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew J Pickett
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Fractyl Health, Inc., Lexington, MA, USA
| | - Wiam A M Madani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Weill Cornell Medical College, New York City, NY, USA
| | - Georgia N White
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Sanghyun Park
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivian R Feig
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Stanford University, Stanford, CA, USA
| | - Miguel Jimenez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Boston University, Boston, MA, USA
| | - Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikhil B Lal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MIT Media Lab, Cambridge, MA, USA
| | - Matt Murphy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Lopes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Morimoto
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Fitzgerald
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tufts University, Medford, MA, USA
| | - Jaime H Cheah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian K Soule
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Niora Fabian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Jung SY, Hwang S, Clarke JM, Bauer TM, Keedy VL, Lee H, Park N, Kim SJ, Lee JI. Pharmacokinetic characteristics of vactosertib, a new activin receptor-like kinase 5 inhibitor, in patients with advanced solid tumors in a first-in-human phase 1 study. Invest New Drugs 2019; 38:812-820. [PMID: 31300967 DOI: 10.1007/s10637-019-00835-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/05/2019] [Indexed: 01/05/2023]
Abstract
Purposes Vactosertib is a new investigational inhibitor of activin receptor-like kinase 5. The objective of this study was to characterize vactosertib pharmacokinetics that are to be applied for subsequent clinical studies. Methods Vactosertib plasma concentration-time data were obtained from a multicenter, dose-escalation, first-in-human phase 1 study conducted in patients with advanced solid tumors. Each patient orally received a fixed dose of vactosertib with the range of 30 mg to 340 mg once daily under fasted condition. Pharmacokinetic analysis was performed using a non-compartmental method. Results Pharmacokinetic data were evaluable in 29 patients. Vactosertib was rapidly absorbed after the first dose with a median time to maximum concentration (tmax) of 1.2 h (interquartile range, 0.8-1.8 h) and quickly eliminated with a median terminal half-life (t1/2) of 3.2 h (2.2-4.2 h) over the dose range studied. Such trend was also observed after repeated doses for five days (median tmax, 1.5 h; median t1/2, 3.0 h). The area under the concentration-time curve within a dosing interval increased in proportion to dose. The median values of apparent clearance and volume of distribution were 29 L/h (21-44 L/h) and 133 L (77-222 L), respectively. The median accumulation ratio after repeated once-daily doses for five days was 0.87 (0.69-1.07). Conclusions Vactosertib pharmacokinetics were dose-proportional within tested dose range with negligible accumulation when administered once daily for five days. Considering the short half-life, it seems necessary to administer vactosertib twice- or thrice-daily to maintain its concentrations above minimum effective level over a dosing interval.
Collapse
Affiliation(s)
- Su Young Jung
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN, USA
| | - Vicki L Keedy
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hukeun Lee
- National OncoVenture, National Cancer Center, Goyang, Republic of Korea
| | - Neunggyu Park
- National OncoVenture, National Cancer Center, Goyang, Republic of Korea
| | | | - Jangik I Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Mistry P, Neagu D, Sanchez-Ruiz A, Trundle PR, Vessey JD, Gosling JP. Prediction of the effect of formulation on the toxicity of chemicals. Toxicol Res (Camb) 2017; 6:42-53. [PMID: 28261444 PMCID: PMC5310521 DOI: 10.1039/c6tx00303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds.
Collapse
Affiliation(s)
- Pritesh Mistry
- Artificial Intelligence Research Group , Faculty of Engineering and Informatics , University of Bradford , Bradford , UK
| | - Daniel Neagu
- Artificial Intelligence Research Group , Faculty of Engineering and Informatics , University of Bradford , Bradford , UK
| | - Antonio Sanchez-Ruiz
- Lhasa Limited , Granary Wharf House , 2 Canal Wharf , Holbeck , Leeds , LS11 9PS , UK .
| | - Paul R Trundle
- Artificial Intelligence Research Group , Faculty of Engineering and Informatics , University of Bradford , Bradford , UK
| | - Jonathan D Vessey
- Lhasa Limited , Granary Wharf House , 2 Canal Wharf , Holbeck , Leeds , LS11 9PS , UK .
| | | |
Collapse
|