1
|
Klijn ME, Hubbuch J. Application of ultraviolet, visible, and infrared light imaging in protein-based biopharmaceutical formulation characterization and development studies. Eur J Pharm Biopharm 2021; 165:319-336. [PMID: 34052429 DOI: 10.1016/j.ejpb.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Imaging is increasingly more utilized as analytical technology in biopharmaceutical formulation research, with applications ranging from subvisible particle characterization to thermal stability screening and residual moisture analysis. This review offers a comprehensive overview of analytical imaging for scientists active in biopharmaceutical formulation research and development, where it presents the unique information provided by the ultraviolet (UV), visible (Vis), and infrared (IR) sections in the electromagnetic spectrum. The main body of this review consists of an outline of UV, Vis, and IR imaging techniques for several (bio)physical properties that are commonly determined during protein-based biopharmaceutical formulation characterization and development studies. The review concludes with a future perspective of applied imaging within the field of biopharmaceutical formulation research.
Collapse
Affiliation(s)
- Marieke E Klijn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Screening of novel excipients for freeze-dried protein formulations. Eur J Pharm Biopharm 2021; 160:55-64. [PMID: 33508435 DOI: 10.1016/j.ejpb.2021.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
The typical excipients used as bulking agents and lyoprotectants for freeze-drying are usually limited to only a few selected substances, such as sucrose and mannitol. Considering the sheer diversity amongst proteins, it is doubtful that this limited choice should, in every case, provide the best possible option in order to achieve the most stable product. In this work, a screening of 12 proteins with 64 excipients was conducted in order to increase the knowledge space of potential excipients. Three critical quality attributes (CQAs) of the freeze-dried products, namely the solid state, the cake appearance and the protein integrity based on changes in tryptophan fluorescence were investigated by high throughput X-ray powder diffraction, image analysis and intrinsic fluorescence spectroscopy, respectively. It was found, that in some cases the excipient had a dominating influence on the CQAs, whilst in other cases the CQAs were primarily protein dependent, or that the CQAs were dependent on the combination of both. In the course of this investigation, a general view of potentially relevant excipients, and their interplay with various proteins, was obtained, thereby furthermore paving the way for the use of novel freeze-drying excipients.
Collapse
|
3
|
Buceta JP, Tréléa IC, Scutellà B, Bourlés E, Fonseca F, Passot S. Heat Transfer During Freeze-Drying Using a High-throughput vial System in view of Process Scale-up to Serum vials. J Pharm Sci 2020; 110:1323-1336. [PMID: 33275993 DOI: 10.1016/j.xphs.2020.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
Specific devices that combine 96-well plates and high-throughput vials were recently proposed to improve the efficiency of formulation screening. Such devices make it possible to increase the number of formulations tested while reducing the amount of active ingredients needed. The geometry of the product container influences the heat and mass transfer during freeze-drying, impacting product temperature (T_{p}) and therefore affecting the final product quality. Our study aimed to develop a tool to identify the operating conditions resulting in the same Tp when using high-throughput vials inside well plates and serum vials. Heat transfer coefficients between the shelf and the high-throughput vials (KV) were measured using the gravimetric method at chamber pressures ranging from 4 to 65 Pa for a batch of 576 vials located at the center of the well plates. KV distributions were used to predict TP distributions during primary drying of a 5% sucrose solution. Tp values were in average 8 °C higher using high-throughput vials instead of serum vials at chamber pressures lower than 12 Pa. This study provides a graphical solution for the management of process scale-up and scale-down between both types of product containers depending on their respective KV and product resistance to mass transfer.
Collapse
Affiliation(s)
- Juan Patricio Buceta
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-78850, Thiverval-Grignon, France
| | - Ioan Cristian Tréléa
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-78850, Thiverval-Grignon, France
| | | | | | - Fernanda Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-78850, Thiverval-Grignon, France
| | - Stéphanie Passot
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-78850, Thiverval-Grignon, France.
| |
Collapse
|
4
|
Zhang Y, Zhang H, Ghosh D. The Stabilizing Excipients in Dry State Therapeutic Phage Formulations. AAPS PharmSciTech 2020; 21:133. [PMID: 32415395 DOI: 10.1208/s12249-020-01673-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Phage therapy has gained prominence due to the increasing pathogenicity of "super bugs" and the rise of their multidrug resistance to conventional antibiotics. Dry state formulation of therapeutic phage is attractive to improve their "druggability" by increasing their shelf life, improving their ease of handling, and ultimately retaining their long-term potency. The use and selection of excipients are critical to stabilize phage in solid formulations and protect their viability from stresses encountered during the solidification process and long-term storage prior to use. Here, this review focuses on the current classes of excipients used to manufacture dry state phage formulations and their ability to stabilize and protect phage throughout the process, as discussed in the literature. We provide perspective of outstanding challenges involved in the formulation of dry state phage. We suggest strategies to improve excipient identification and selection, optimize the potential excipient combinations to improve phage viability during formulation, and evaluate new methodologies that can provide greater insight into phage-excipient interactions to improve design criteria to improve formulation of dry state phage therapeutics. Addressing these challenges opens up new opportunities to re-design and re-imagine phage formulations for improved efficacy as a pharmaceutical product.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA
- Formulation Development Department, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, New York, 10591, USA
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA
- Analytical Development Department, Ultragenyx Pharmaceutical Inc., 5000 Marina Blvd., Brisbane, California, 94005, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA.
| |
Collapse
|
5
|
Clavaud M, Lema-Martinez C, Roggo Y, Bigalke M, Guillemain A, Hubert P, Ziemons E, Allmendinger A. Near-Infrared Spectroscopy to Determine Residual Moisture in Freeze-Dried Products: Model Generation by Statistical Design of Experiments. J Pharm Sci 2019; 109:719-729. [PMID: 31499067 DOI: 10.1016/j.xphs.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022]
Abstract
Moisture content (MC) is a critical quality attribute of lyophilized biopharmaceuticals and can be determined by near-infrared (NIR) spectroscopy as nondestructive alternative to Karl-Fischer titration. In this study, we create NIR models to determine MC in mAb lyophilisates by use of statistical design of experiments (DoE) and multivariate data analysis. We varied the composition of the formulation as well as lyophilization parameters covering a large range of representative conditions, which is commonly referred to as "robustness testing" according to quality-by-design concepts. We applied principles of chemometrics with partial least squares and principal component analysis. The NIR model excluded samples with complete collapse and MC > 6%. The 2 main components in the principal component analysis were MC (91%) and protein:sugar ratio (6%). The third component amounted to only 3% and remained unspecified but may include variations in process parameters and cake structure. In contrast to traditional approaches for NIR model creation, the DoE-based model can be used to monitor MC during drug product development work including scale-up, and transfer without the need to update the NIR model if protein:sugar ratio and MC stays within the tested limits and cake structure remains macroscopically intact. The use of the DoE approach and multivariate data analysis ensures product consistency and improves understanding of the manufacturing process.
Collapse
Affiliation(s)
- Matthieu Clavaud
- Quality Control for Commercial Bulk Products, Analytical Science and Technology, F. Hoffmann-La Roche Ltd., Wurmisweg, CH-4303 Kaiseraugst, Switzerland; University of Liege, CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium.
| | - Carmen Lema-Martinez
- Pharmaceutical Development & Supplies Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse, CH-4070 Basel, Switzerland
| | - Yves Roggo
- 2 rue Arthur Rimbaud, 68510 Sierentz, France
| | - Michael Bigalke
- Pharmaceutical Development & Supplies Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse, CH-4070 Basel, Switzerland
| | - Aurélie Guillemain
- Quality Control for Commercial Bulk Products, Analytical Science and Technology, F. Hoffmann-La Roche Ltd., Wurmisweg, CH-4303 Kaiseraugst, Switzerland
| | - Philippe Hubert
- University of Liege, CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - Eric Ziemons
- University of Liege, CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - Andrea Allmendinger
- Pharmaceutical Development & Supplies Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse, CH-4070 Basel, Switzerland.
| |
Collapse
|
6
|
Meng-Lund H, Holm TP, Poso A, Jorgensen L, Rantanen J, Grohganz H. Exploring the chemical space for freeze-drying excipients. Int J Pharm 2019; 566:254-263. [PMID: 31145963 DOI: 10.1016/j.ijpharm.2019.05.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Commonly, a limited number of generally accepted bulking agents and lyoprotectants are used for freeze-drying; predominantly mannitol, glycine, sucrose and trehalose. The purpose of this study was to combine a theoretical approach using molecular descriptors with a large scale experimental screening to evaluate the suitability of a broad range of excipients for freeze-drying. A large selection of sugars, polyols and amino acids was characterized by modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD) after well-plate based freeze-drying. The calculated molecular descriptors were investigated with both hierarchical cluster analysis and principal component analysis. A clear clustering of the excipients according to the size-related and weight-related descriptors was observed; however other relevant descriptors could also be identified. From a practical perspective, a trend was observed with regard to a higher likelihood for amorphisation and a higher glass transition temperature of the maximally freeze-concentrated solution with increasing molecular size. A translation of the molecular descriptors on pharmaceutical performance was more successful for lyoprotectants than for bulking agents. Additionally, in the course of the experimental screening, several new potential bulking agents and lyoprotectants were identified.
Collapse
Affiliation(s)
- Helena Meng-Lund
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias Palle Holm
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Antti Poso
- University of Eastern Finland, School of Pharmacy, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; University Hospital Tübingen, Department of Internal Medicine VIII, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Lene Jorgensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Hossain MN, Igne B, Anderson CA, Drennen JK. Influence of moisture variation on the performance of Raman spectroscopy in quantitative pharmaceutical analyses. J Pharm Biomed Anal 2019; 164:528-535. [DOI: 10.1016/j.jpba.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
8
|
Goldman JM, More HT, Yee O, Borgeson E, Remy B, Rowe J, Sadineni V. Optimization of Primary Drying in Lyophilization During Early-Phase Drug Development Using a Definitive Screening Design With Formulation and Process Factors. J Pharm Sci 2018; 107:2592-2600. [DOI: 10.1016/j.xphs.2018.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/01/2022]
|