1
|
Köse S, Varan C, Önen S, Nemutlu E, Bilensoy E, Korkusuz P. 2-AG-loaded and bone marrow-targeted PCL nanoparticles as nanoplatforms for hematopoietic cell line mobilization. Stem Cell Res Ther 2024; 15:341. [PMID: 39354544 PMCID: PMC11446023 DOI: 10.1186/s13287-024-03902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated. METHODS PCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay. RESULTS The 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 µM 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 µM 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 µM dose and 8 h time window via a specific CBR agonism. CONCLUSION The newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.
Collapse
Affiliation(s)
- Sevil Köse
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Akdeniz University, Antalya, 07070, Turkey.
- Faculty of Medicine, Department of Medical Biology, Atilim University, Ankara, 06830, Turkey.
| | - Cem Varan
- Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, 06532, Turkey
| | | | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, 06100, Turkey
| | - Erem Bilensoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, 06100, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, 06530, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
2
|
Khafagy ES, Motawee AO, Ghorab MM, Gardouh AR. Atorvastatin-loaded pro-nanolipospheres with ameliorated oral bioavailability and antidyslipidemic activity. Colloids Surf B Biointerfaces 2023; 227:113361. [PMID: 37236085 DOI: 10.1016/j.colsurfb.2023.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Despite significant advances in oral drug delivery technologies, many drugs are prone to limited oral bioavailability due to biological barriers that hinder drug absorption. Pro-nanolipospheres (PNL) are a form of delivery system that can potentiate the oral bioavailability of poorly water-soluble drugs through a variety of processes, including increased drug solubility and protecting them from degradation by intestinal or hepatic first-pass metabolism. In this study, pro-nanolipospheres were employed as a delivery vehicle for improving the oral bioavailability of the lipophilic statin, atorvastatin (ATR). Various ATR-loaded PNL formulations, composed of various pharmaceutical ingredients, were prepared by the pre-concentrate method and characterized by determining particle size, surface charge, and encapsulation efficiency. An optimized formula (ATR-PT PNL) showing the smallest particle size, highest zeta potential, and highest encapsulation efficiency was selected for further in vivo investigations. The in vivo pharmacodynamic experiments demonstrated that the optimized ATR-PT PNL formulation exerted a potent hypolipidemic effect in a Poloxamer® 407-induced hyper-lipidaemia rat model by restoring normal cholesterol and triglyceride serum levels along with alleviating serum levels of LDL while elevating serum HDL levels, compared to pure drug suspensions and marketed ATR (Lipitor®). Most importantly, oral administration of the optimized ATR-PT PNL formulation showed a dramatic increase in ATR oral bioavailability, as evinced by a 1.7- and 3.6-fold rise in systemic bioavailability when compared with oral commercial ATR suspensions (Lipitor®) and pure drug suspension, respectively. Collectively, pro-nanolipospheres might represent a promising delivery vehicle for enhancing the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Abeer Osama Motawee
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of pharmaceutical sciences, Faculty of pharmacy, Jadara university, Irbid 21110, Jordan
| |
Collapse
|
3
|
Torrado-Salmerón C, Guarnizo-Herrero V, Torrado G, Peña MÁ, Torrado-Santiago S, de la Torre-Iglesias PM. Solid dispersions of atorvastatin with Kolliphor RH40: Enhanced supersaturation and improvement in a hyperlipidemic rat model. Int J Pharm 2023; 631:122520. [PMID: 36581105 DOI: 10.1016/j.ijpharm.2022.122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Atorvastatin is a potent lipid-lowering drug with poor solubility and high presystemic clearance that limits its therapeutic efficacy. The aim of this study was to develop solid dispersions and micellar systems to obtain fast-dissolving atorvastatin systems that enhances their anti-hyperlipidemic effect. Solubility and wettability studies allow the development of solid dispersions with low proportions of croscarmellose sodium as hydrophilic carrier. Solid state characterization studies indicated that the addition of Kolliphor® RH40 surfactant to solid dispersions increases intermolecular hydrogen bonding between drug and polymer chains. Dissolution studies in biorelevant Fasted State Simulate Intestinal Fluid (FaSSIF pH 6.5) medium showed for atorvastatin solid dispersion a supersaturation peak of atorvastatin followed by an aggregation/precipitation process. Only the presence of a surfactant such as Kolliphor® RH40 in atorvastatin micellar system, promotes the presence of micelles that achieve delayed recrystallization. Efficacy studies were carried out using a hyperlipidemic model of rats fed with a high- fat diet. The atorvastatin micellar system at doses of 10 mg/kg, revealed a significant improvement in serum levels of total cholesterol, low-density lipoproteins, and triglycerides compared to atorvastatin raw material. This micellar system also exhibited more beneficial effects on liver steatosis, inflammation and ballooning injury.
Collapse
Affiliation(s)
- Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain.
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain.
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Ahmed OAA, Badr-Eldin SM, Caruso G, Fahmy UA, Alharbi WS, Almehmady AM, Alghamdi SA, Alhakamy NA, Mohamed AI, Aldawsari HM, Mady FM. Colon Targeted Eudragit Coated Beads Loaded with Optimized Fluvastatin-Scorpion Venom Conjugate as a Potential Approach for Colon Cancer Therapy: In Vitro Anticancer Activity and In Vivo Colon Imaging. J Pharm Sci 2022; 111:3304-3317. [PMID: 36007556 DOI: 10.1016/j.xphs.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023]
Abstract
Preclinical studies suggest that most of statins or 3‑hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors possess pleiotropic anticancer activity. The aim of the present work was to investigate the conjugation of the statin fluvastatin (FLV) with scorpion venom (SV), a natural peptide with proven anticancer properties, to enhance FLV cytotoxic activity and prepare colon targeted FLV-SV nanoconjugate beads for management of colon cancer. Response surface design was applied for the optimization of FLV-SV nanoconjugates. FLV-SV particle size and zeta potential were selected as responses. Cytotoxicity of optimized FLV-SV nanoconjugates was carried out on Caco2 cell line. Colon targeted alginate coated Eudragit S100 (ES100) beads for the optimized formula were prepared with the utilization of barium sulfate (BaSO4) as radiopaque contrast substance. Results revealed that optimized FLV-SV nanoconjugates showed a size of 71.21 nm, while the zeta potential was equal to 29.13 mV. Caco2 cells were considerably more sensitive to the FLV-SV formula (half-maximal inhibitory concentration (IC50) = 11.91 µg/mL) compared to SV and FLV used individually, as shown by values of IC50 equal to 30.23 µg/mL and 47.68 µg/mL, respectively. In vivo imaging of colon targeted beads, carried out by employing real-time X-ray radiography, confirmed the efficiency of colon targeted beads. Overall our results indicate that the optimized FLV-SV nanoconjugate loaded alginate coated ES100 beads could represent a promising approach for colon cancer with efficient colon targeting ability.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Neuropharmacology and Translational Neurosciences Research Unit, Troina 94018, Italy.
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A Alghamdi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amir I Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo 11435, Egypt
| | - Hibah M Aldawsari
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatma M Mady
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt.
| |
Collapse
|
5
|
Bhatt K, Patil P, Jani P, Thakkar P, Sawant K. Design and evaluation of hyaluronic acid-coated PLGA nanoparticles of raloxifene hydrochloride for treatment of breast cancer. Drug Dev Ind Pharm 2022; 47:2013-2024. [PMID: 35686735 DOI: 10.1080/03639045.2022.2088784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CONTEXT In the present study, hyaluronic acid (HA)-coated raloxifene-loaded poly(l-lactic-co-glycolic acid) (PLGA) nanoparticles have been developed to improve the anticancer potential and reduce side effects associated with the drug. AIM AND OBJECTIVES The investigation was aimed to formulate and optimize raloxifene hydrochloride (RALH)-loaded PLGA nanoparticles with surface modification using HA as a targeting moiety. To perform physicochemical characterization, in vitro cytotoxicity study (using MCF-7), in vitro drug release study and in vivo pharmacodynamic study of optimized formulation. METHODOLOGY Raloxifene hydrochloride-loaded PLGA nanoparticles were prepared by nanoprecipitation technique, followed by surface modification with HA. Formulation was optimized by using 23 factorial design and characterized by physicochemical, in vitro drug release, in vitro cytotoxicity studies, and in vivo pharmacokinetics. RESULTS AND DISCUSSION The particle size, PDI, zeta potential, entrapment efficiency, and loading capacity of spherically shaped RALH-loaded nanoparticles were 207.3 ± 4.2 d.nm, 0.218 ± 0.127, -.127 mV, 43.75 ± 1.2%, and 7.55 ± 1.14%, respectively. The in vitro drug release showed sustained release and followed Korsmeyer-Peppas model with non-Fickian release pattern. The in vitro cytotoxicity study of drug-loaded NPs by MTT assay on MCF-7 breast carcinoma cell showed anti-cancer activity after 48 h of treatment. CONCLUSION The results of the present investigation suggested that RALH-loaded HA-modified PLGA nanoparticles showed sustained drug release with anticancer activity and can be a promising approach for treatment of breast cancer.
Collapse
Affiliation(s)
- Kajol Bhatt
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Parva Jani
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Parth Thakkar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
6
|
The persistence and crystallization behavior of atorvastatin calcium amorphous dispersions in polyvinylpyrrolidone. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Hasija R, Chaurasia S, Gupta S. Formulation design, optimization and in vivo evaluation of oral co-encapsulated resveratrol-humic acid colloidal polymeric nanocarriers. Pharm Dev Technol 2021; 26:953-966. [PMID: 34374616 DOI: 10.1080/10837450.2021.1966442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study aims at formulation and optimization of resveratrol and humic acid co-encapsulated colloidal polymeric nanocarriers to improve stability, oral bioavailability, and antiradical activity of water-insoluble, resveratrol. The eudragit E100 polymeric material was used to fabricate resveratrol and humic acid co-encapsulated oral colloidal polymeric nanocarriers (Res-HA-co-CPNs) using emulsification-diffusion-evaporation method. Taguchi orthogonal array design was employed to check the effect of formulation factors on in vitro physicochemical characteristics. The optimized formulation was further evaluated for oral bioavailability as well as for antiradical potential. Optimized Res-HA-co-CPNs demonstrated spherical and smooth surface including mean particle size, 120.56 ± 18.8 nm; polydispersity index, 0.122; zeta potential, +38.25 mV; and entrapment efficiency, 82.37 ± 1.49%. Solid-state characterization confirmed the amorphous characteristic of optimized Res-HA-co-CPNs. In vitro release profile of Res-HA-co-CPNs showed sustained release behavior up to 48 h and CPNs were found to remain stable at the refrigerated condition for 6 months. In vivo pharmacokinetic studies revealed significant (p < 0.05) improvement of ∼62.76-fold in oral bioavailability. The radical-scavenging activity was found to be increased with time and after 72 h, it was analogous to pure Res. IC50 values were reported to be decreased with time. Henceforth, developed Res-HA-co-CPNs was proven to be a proficient dosage form to increase stability, oral bioavailability, and antiradical activity of resveratrol.HighlightsResveratrol-humic acid co-encapsulated colloidal polymeric nanocarriers (Res-HA-co-CPNs) were fabricated by emulsification-diffusion-evaporation method and optimized by Taguchi orthogonal array design.The Res-HA-co-CPNs revealed favorable mean particle size and percent encapsulation efficiency with a spherical and smooth surface.The Res-HA-co-CPNs showed diffusion-controlled release of Res and were found to be stable at the refrigerated condition for 6 months.The optimized Res-HA-co-CPNs demonstrated significantly (p < 0.05) higher oral bioavailability with respect to pure Res and PM.The optimized Res-HA-co-CPNs demonstrated higher radical-scavenging activity with respect to time.
Collapse
Affiliation(s)
- Rahul Hasija
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,Formulation Research and Development, Mankind Research Centre, Gurgaon, India
| | - Sundeep Chaurasia
- Formulation Research and Development, Mankind Research Centre, Gurgaon, India.,Innovation and Pharma R&D, Ashland Specialty Ingredients, Shamirpet, India
| | - Swati Gupta
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
8
|
Eltellawy YA, El-Kayal M, Abdel-Rahman RF, Salah S, Shaker DS. Optimization of transdermal atorvastatin calcium - Loaded proniosomes: Restoring lipid profile and alleviating hepatotoxicity in poloxamer 407-induced hyperlipidemia. Int J Pharm 2020; 593:120163. [PMID: 33309831 DOI: 10.1016/j.ijpharm.2020.120163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 01/22/2023]
Abstract
In an attempt to optimize the anti- hyperlipidemic effect and reduce statins induced hepatotoxicity, Atorvastatin Calcium (ATC) transdermal proniosomal gel (PNG) was developed. Different non-ionic surfactants (NISs) (Spans, Tweens, Cremophor RH 40 and Brij 52) were incorporated in the vesicle's lipid bilayer, in combination with lecithin. PNG formulae were characterized for encapsulation efficiency percent (% EE), vesicle size, polydispersity index (PDI) and zeta potential (ZP). Ex-vivo permeation study was performed using full thickness rat skin measuring drug flux and skin permeability coefficients. The pharmacodynamic performance of optimized transdermal ATC- PNG on both lipid profile and liver biomarkers was assessed and compared to oral ATC administration in poloxamer 407-induced hyperlipidemic rats. The liver tissues were subjected to histological examination as well. The results revealed nano-size range vesicles with relatively high ATC entrapment efficiency. Ex-vivo results demonstrated the permeation superiority of ATC proniosomes over free drug. Pharmacodynamic study revealed that transdermal administration of ATC- PNG succeeded in retaining the anti-hyperlipidemic efficacy of orally administered ATC without elevating liver biomarkers. The histological examination signified the role of optimized ATC-PNG in hindering statin- induced hepatocellular damage. The obtained results suggested a promising, easy-to-manufacture and effective ATC proniosomal gel for safe treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Yasmin A Eltellawy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt.
| | - Maha El-Kayal
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt
| | | | - Salwa Salah
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Dalia S Shaker
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt.
| |
Collapse
|
9
|
Tizaoui C, Galai H, Barrio M, Clevers S, Couvrat N, Dupray V, Coquerel G, Tamarit JL, Rietveld IB. Does the trihydrate of atorvastatin calcium possess a melting point? Eur J Pharm Sci 2020; 148:105334. [PMID: 32259678 DOI: 10.1016/j.ejps.2020.105334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
To decide whether an active pharmaceutical ingredient can be used in its amorphous form in drug formulations, often the glass transition is studied in relation to the melting point of the pharmaceutical. If the glass transition temperature is high enough and found relatively close to the melting point, the pharmaceutical is considered to be a good glass former. However, it is obviously important that the observed melting point and glass transition involve exactly the same system, otherwise the two temperatures cannot be compared. Although this may seem trivial, in the case of hydrates, where water may leave the system on heating, the composition of the system may not be evident. Atorvastatin calcium is a case in point, where confusing terminology, absence of a proper anhydrate form, and loss of water on heating lead to several doubtful conclusions in the literature. However, considering that no anhydrate crystal has ever been observed and that the glass transition of the anhydrous system is found at 144 °C, it can be concluded that if the system is kept isolated from water, the chances that atorvastatin calcium crystallises at room temperature is negligible. The paper discusses the various thermal effects of atorvastatin calcium on heating and proposes a tentative binary phase diagram with water.
Collapse
Affiliation(s)
- Chaima Tizaoui
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France; Laboratory of Materials, Treatment and Analysis (LMTA), National Institute of Research and Physical-chemical Analysis, Technopark of Sidi-Thabet, Ariana 2020, Tunisia; Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna Bizerte 7021, Tunisia
| | - Haykel Galai
- Laboratory of Materials, Treatment and Analysis (LMTA), National Institute of Research and Physical-chemical Analysis, Technopark of Sidi-Thabet, Ariana 2020, Tunisia
| | - Maria Barrio
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Catalonia, Barcelona E-08019, Spain
| | - Simon Clevers
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Nicolas Couvrat
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Valérie Dupray
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Gérard Coquerel
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Josep-Lluis Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Catalonia, Barcelona E-08019, Spain
| | - Ivo B Rietveld
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France; Faculté de Pharmacie, Université de Paris, 4 avenue de l'observatoire, Paris 75006, France.
| |
Collapse
|
10
|
Sharma M, Mehta I. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci Rep 2019; 9:16105. [PMID: 31695118 PMCID: PMC6834591 DOI: 10.1038/s41598-019-52645-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Atorvastatin, a favored option for hyperlipidemia exhibits the problem of poor gastric solubility and low absolute bioavailability (12%) along with higher pre-systemic clearance (>80%). Therefore, to circumvent these limitations, atorvastatin nanocrystals were prepared using poloxamer-188 as stabilizer via high pressure homogenization technique followed by lyophilization. Various variables like drug to poloxamer-188 ratio, homogenization cycle, homogenization pressure, type and concentration of cryoprotectant were optimized to achieve uniform nanosized crystals with good dispersibility. Solid state characterization by ATR-FTIR and DSC revealed no incompatible physicochemical interaction between drug and excipients in formulation while DSC and PXRD collectively corroborated the reduced crystallinity of drug in nanocrystals. Size analysis and SEM confirmed nanometric size range of nanocrystals (225.43 ± 24.36 nm). Substantial improvement in gastric solubility (~40 folds) and dissolution rate of drug in nanocrystals was observed. Pharmacokinetic study in wistar rats revealed significant improvement in oral bioavailability (~2.66 folds) with atorvastatin nanocrystals compared to pure drug. Furthermore, reduction in serum total lipid cholesterol, LDL and triglyceride content justified the effectiveness of formulation at 50% less dose of atorvastatin along with improved plasma safety profile in comparison of pure drug. In conclusion, atorvastatin nanocrystals are safe and efficacious drug delivery system confirming potent competence in treatment of hyperlipidemic conditions with ease of scalability for commercialization.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
| | - Isha Mehta
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
11
|
Dong W, Su X, Xu M, Hu M, Sun Y, Zhang P. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. Asian J Pharm Sci 2018; 13:546-554. [PMID: 32211078 PMCID: PMC7081932 DOI: 10.1016/j.ajps.2018.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/04/2018] [Accepted: 08/17/2018] [Indexed: 11/29/2022] Open
Abstract
Due to low solubility and bioavailability, atorvastatin calcium is confronted with challenge in conceiving appropriate formulation. Solid dispersion of atorvastatin calcium was prepared through the solvent evaporation method, with Poloxamer 188 as hydrophilic carriers. This formulation was then characterized by scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction and fourier transform infrared spectroscopy. Moreover, all these studies suggested the conversion of crystalline atorvastatin calcium. In addition, the drug solubility studies as well as dissolution rates compared with bulk drug and market tablets Lipitor were also examined. Furthermore, the study investigated the pharmacokinetics after oral administration of Lipitor and solid dispersion. And the AUC0–8 h and Cmax increased after taking ATC-P188 solid dispersion orally compared with that of Lipitor. All these could be demonstrated that ATC-P188 solid dispersions would be prospective means for enhancing higher oral bioavailability of ATC.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Zhang
- Corresponding author. Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China. Tel.:+86 24 43520509
| |
Collapse
|
12
|
Korani S, Korani M, Bahrami S, Johnston TP, Butler AE, Banach M, Sahebkar A. Application of nanotechnology to improve the therapeutic benefits of statins. Drug Discov Today 2018; 24:567-574. [PMID: 30292917 DOI: 10.1016/j.drudis.2018.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
Abstract
Hyperlipidemia is defined as an elevated level of lipids and lipoproteins in the blood and is considered to be a significant risk factor for accelerating the process of atherosclerosis and, consequently, cardiovascular disease. The level of cholesterol, especially low-density lipoprotein cholesterol (LDL-C), is commonly elevated in hyperlipidemia and represents the primary therapeutic target. Statins are a group of drugs that function by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and are extremely efficacious in reducing elevated LDL-C in the serum and preventing atherosclerotic cardiovascular disease. However, statins have some limitations, such as poor aqueous solubility, low oral absorption, and, consequently, limited bioavailability when administered by the oral route. The field of nanotechnology is now well developed and some of these newer nanotechnology strategies offer systems with enhanced aqueous solubility of the statin, increased absorption, bioavailability, and controlled release of the statin at the site of administration. Here, we discuss nano-sized drug delivery systems to enhance the therapeutic potential of statins.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Korani
- Nanotechnology Research Center, Buali (Avicenna) Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
García-Guzmán P, Medina-Torres L, Calderas F, Bernad-Bernad MJ, Gracia-Mora J, Mena B, Manero O. Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release. Colloids Surf B Biointerfaces 2018; 167:397-406. [DOI: 10.1016/j.colsurfb.2018.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 11/30/2022]
|
14
|
Jahangir MA, Khan R, Sarim Imam S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:66-78. [PMID: 29226729 DOI: 10.1080/21691401.2017.1411933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of the study to formulate and statistically optimize sitagliptin-loaded eudragit nanoparticles (SIT-NPs) and evaluate the in-vitro pharmaceutical quality and in-vivo anti-diabetic assessment. METHOD SIT-NPs were prepared by using combination method of solvent evaporation and nano-precipitation techniques. The influence of different independent variables as eudragit RL100 concentration (%), tween 80 concentration (%) and sonication time (min) were evaluated on dependent variables like particle size (nm), drug loading (%) and in-vitro drug release (%). Further, the optimized formulation was evaluated for surface morphology, CLSM, ex-vivo permeation study and in-vivo anti-diabetic activity and stability study. RESULTS The developed SIT-NPs formulations showed particle size range (135.86-193.45 nm), drug loading (6.36-8.76%) and prolonged drug release over 24 h. The prepared SIT-NPs were found to be nearly spherical with smooth surface. The comparative in-vitro release study and CLSM study results revealed that SIT-NPopt showed significantly (p < .05) enhanced release and permeation as compared to SIT free solution (SIT-Fs). The in-vivo anti-diabetic assessment revealed that SIT-NPopt able to reduce the blood sugar level (BSL) for a prolonged period of time. Further, the stability study data showed the formulations were found stable at both temperature and having the shelf life of 488 d. CONCLUSIONS This research has shown that SIT-NPs based on experimental design offers a new and better approach to delivering SIT, thus encouraging further development of this formulation.
Collapse
Affiliation(s)
| | - Ruqaiyah Khan
- b Department of Pharmacology , Siddhartha Institute of Pharmacy , Dehradun , India
| | - Syed Sarim Imam
- a Department of Pharmaceutics, School of Pharmacy , Glocal University , Saharanpur , India
| |
Collapse
|
15
|
The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. Asian J Pharm Sci 2016; 12:285-291. [PMID: 32104340 PMCID: PMC7032215 DOI: 10.1016/j.ajps.2016.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
A biodegradable poly(lactic-co-glycolic acid) loading atorvastatin calcium (AC) nanoparticles (AC-PLGA-NPs) were prepared by probe ultrasonication and evaporation method aiming at improving the oral bioavailability of AC. The effects of experimental parameters, including stabilizer species, stabilizer concentration and pH of aqueous phase, on particle size were also evaluated. The resultant nanoparticles were in spherical shape with an average diameter of 174.7 nm and a narrow particle size distribution. And the drug loading and encapsulation efficiency were about 8% and 71%, respectively. The particle size and polydispersion were almost unchanged in 10 days. The release curves of AC-PLGA-NPs in vitro displaying sustained release characteristics indicated that its release mechanisms were matrix erosion and diffusion. The pharmacokinetic study in vivo revealed that the Cmax and AUC0-∞ of AC-PLGA-NPs in rats were nearly 3.7-fold and 4.7-fold higher than that of pure atorvastatin calcium suspension. Our results demonstrated that the delivery of AC-PLGA-NPs could be a promising approach for the oral delivery of AC for enhanced bioavailability.
Collapse
|
16
|
Mishra B, Padaliya R, Patel RR. Exemestane encapsulated vitamin E-TPGS–polymeric nanoparticles: preparation, optimization, characterization, and in vitro cytotoxicity assessment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:522-534. [DOI: 10.3109/21691401.2016.1163714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Padaliya
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi R. Patel
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
17
|
Patel RR, Chaurasia S, Khan G, Chaubey P, Kumar N, Mishra B. Highly water-soluble mast cell stabiliser-encapsulated solid lipid nanoparticles with enhanced oral bioavailability. J Microencapsul 2016; 33:209-20. [DOI: 10.3109/02652048.2016.1144819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ravi R. Patel
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sundeep Chaurasia
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Gayasuddin Khan
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pramila Chaubey
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Nagendra Kumar
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|