1
|
Uceda AB, Frau J, Vilanova B, Adrover M. On the effect of methionine oxidation on the interplay between α-synuclein and synaptic-like vesicles. Int J Biol Macromol 2023; 229:92-104. [PMID: 36584779 DOI: 10.1016/j.ijbiomac.2022.12.262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits. Consequently, researchers have invested mounting efforts trying to elucidate the molecular mechanisms underlying the links between oxidative stress, αS aggregation and PD. However, it has not been described yet the effect of Met oxidation on the physiological function of αS. Trying to shed light on this aspect, we have here studied a synthetic αS that displayed all its Met replaced by MetO moieties (αS-MetO). Our study has allowed to prove that MetO diminishes the affinity of αS towards anionic micelles (SDS), although the micelle-bound fraction of αS-MetO still adopts an α-helical folding resembling that of the lipid-bound αS. MetO also diminishes the affinity of αS towards synaptic-like vesicles, and its hindering effect is much more pronounced than that displayed on the αS-micelle affinity. Additionally, we have also demonstrated that MetO impairs the physiological function of αS as a catalyst of the clustering and the fusion of synaptic vesicles (SVs). Our findings provide a new understanding on how Met oxidation affects one of the most relevant biological functions attributed to αS that is to bind and cluster SVs along the neurotransmission.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
2
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Lohmann S, Grigoletto J, Bernis ME, Pesch V, Ma L, Reithofer S, Tamgüney G. Ischemic stroke causes Parkinson's disease-like pathology and symptoms in transgenic mice overexpressing alpha-synuclein. Acta Neuropathol Commun 2022; 10:26. [PMID: 35209932 PMCID: PMC8867857 DOI: 10.1186/s40478-022-01327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The etiology of Parkinson's disease is poorly understood and is most commonly associated with advancing age, genetic predisposition, or environmental toxins. Epidemiological findings suggest that patients have a higher risk of developing Parkinson's disease after ischemic stroke, but this potential causality lacks mechanistic evidence. We investigated the long-term effects of ischemic stroke on pathogenesis in hemizygous TgM83 mice, which express human α-synuclein with the familial A53T mutation without developing any neuropathology or signs of neurologic disease for more than 600 days. We induced transient focal ischemia by middle cerebral artery occlusion in 2-month-old TgM83+/- mice and monitored their behavior and health status for up to 360 days post surgery. Groups of mice were sacrificed at 14, 30, 90, 180, and 360 days after surgery for neuropathological analysis of their brains. Motor deficits first appeared 6 months after focal ischemia and worsened until 12 months afterward. Immunohistochemical analysis revealed ischemia-induced neuronal loss in the infarct region and astrogliosis and microgliosis indicative of an inflammatory response, which was most pronounced at 14 days post surgery. Infarct volume and inflammation gradually decreased in size and severity until 180 days post surgery. Surprisingly, neuronal loss and inflammation were increased again by 360 days post surgery. These changes were accompanied by a continuous increase in α-synuclein aggregation, its neuronal deposition, and a late loss of dopaminergic neurons in the substantia nigra, which we detected at 360 days post surgery. Control animals that underwent sham surgery without middle cerebral artery occlusion showed no signs of disease or neuropathology. Our results establish a mechanistic link between ischemic stroke and Parkinson's disease and provide an animal model for studying possible interventions.
Collapse
Affiliation(s)
- Stephanie Lohmann
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Jessica Grigoletto
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Maria Eugenia Bernis
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Verena Pesch
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Liang Ma
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Sara Reithofer
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Gültekin Tamgüney
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Lima VDA, Esquinelato R, Carmo-Gonçalves P, Nascimento LAD, Lee H, Eliezer D, Romão L, Follmer C. The dopamine receptor agonist apomorphine stabilizes neurotoxic α-synuclein oligomers. FEBS Lett 2022; 596:309-322. [PMID: 34928512 PMCID: PMC8972942 DOI: 10.1002/1873-3468.14263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The misfolding and aggregation of the protein α-synuclein (aSyn) into potentially neurotoxic oligomers is believed to play a pivotal role in the neuropathogenesis of Parkinson's disease (PD). Herein, we explore how apomorphine (Apo), a nonselective dopamine D1 and D2 receptor agonist utilized in the therapy for PD, affects the aggregation and toxicity of aSyn in vitro. Our data indicated that Apo inhibits aSyn fibrillation leading to the formation of large oligomeric species (Apo-aSyn-O), which exhibit remarkable toxicity in mesencephalic dopaminergic neurons in primary cultures. Interestingly, purified Apo-aSyn-O, even at very low concentrations, seems to be capable of converting unmodified aSyn monomer into neurotoxic species. Collectively, our findings warn for a possible dangerous effect of Apo on aSyn misfolding/aggregation pathway.
Collapse
Affiliation(s)
- Vanderlei de Araujo Lima
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Esquinelato
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Phelippe Carmo-Gonçalves
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hudson Lee
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristian Follmer
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Oliveira JT, Dakic V, Vitória G, Pedrosa CDS, Mendes M, Aragão LGH, Cardim-Pires TR, Lelièvre D, Furtado DR, Pinheiro RO, Foguel D, Breton L, Bouez C, De Vecchi R, Guimarães MZP, Rehen S. Oligomeric α-Synuclein induces skin degeneration in reconstructed human epidermis. Neurobiol Aging 2022; 113:108-117. [DOI: 10.1016/j.neurobiolaging.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
|
6
|
Potent inhibitors of toxic alpha-synuclein identified via cellular time-resolved FRET biosensors. NPJ Parkinsons Dis 2021; 7:52. [PMID: 34183676 PMCID: PMC8238948 DOI: 10.1038/s41531-021-00195-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
We have developed a high-throughput drug discovery platform, measuring fluorescence resonance energy transfer (FRET) with fluorescent alpha-synuclein (αSN) biosensors, to detect spontaneous pre-fibrillar oligomers in living cells. Our two αSN FRET biosensors provide complementary insight into αSN oligomerization and conformation in order to improve the success of drug discovery campaigns for the treatment of Parkinson's disease. We measure FRET by fluorescence lifetime, rather than traditional fluorescence intensity, providing a structural readout with greater resolution and precision. This facilitates identification of compounds that cause subtle but significant conformational changes in the ensemble of oligomeric states that are easily missed using intensity-based FRET. We screened a 1280-compound small-molecule library and identified 21 compounds that changed the lifetime by >5 SD. Two of these compounds have nanomolar potency in protecting SH-SY5Y cells from αSN-induced death, providing a nearly tenfold improvement over known inhibitors. We tested the efficacy of several compounds in a primary mouse neuron assay of αSN pathology (phosphorylation of mouse αSN pre-formed fibrils) and show rescue of pathology for two of them. These hits were further characterized with biophysical and biochemical assays to explore potential mechanisms of action. In vitro αSN oligomerization, single-molecule FRET, and protein-observed fluorine NMR experiments demonstrate that these compounds modulate αSN oligomers but not monomers. Subsequent aggregation assays further show that these compounds also deter or block αSN fibril assembly.
Collapse
|
7
|
Teng JS, Ooi YY, Chye SM, Ling APK, Koh RY. Immunotherapies for Parkinson's disease: Progression of Clinical Development. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:802-813. [PMID: 34042040 DOI: 10.2174/1871527320666210526160926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is a common neurodegenerative disease affecting the movement and wellbeing of most elderlies. The manifestations of Parkinson's disease often include resting tremor, stiffness, bradykinesia and muscular rigidity. The typical hallmark of Parkinson's disease is the destruction of neurons in the substantia nigra and the presence of Lewy bodies in different compartments of the central nervous system. Due to various limitations to the currently available treatments, immunotherapies have emerged to be the new approach to Parkinson's disease treatment. This approach shows some positive outcomes on the efficacy in removing the aggregated species of alpha-synuclein, which is believed to be one of the causes of Parkinson's disease. In this review, an overview of how alpha-synuclein contributes to Parkinson's disease and the effects of a few new immunotherapeutic treatments, including BIIB054 (cinpanemab), MEDI1341, AFFITOPE and PRX002 (prasinezumab) that are currently under clinical development, will be discussed.
Collapse
Affiliation(s)
- Jet Shee Teng
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J. Cu 2+, Ca 2+, and methionine oxidation expose the hydrophobic α-synuclein NAC domain. Int J Biol Macromol 2020; 169:251-263. [PMID: 33345970 DOI: 10.1016/j.ijbiomac.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
α-Synuclein is an intrinsically disordered protein whose aggregation is related to Parkinson's disease and other neurodegenerative disorders. Metal cations are one of the main factors affecting the propensity of α-synuclein to aggregate, either by directly binding to it or by catalyzing the production of reactive oxygen species that oxidize it. His50, Asp121 and several additional C-terminal α-synuclein residues are binding sites for numerous metal cations, while methionine sulfoxidation occurs readily on this protein under oxidative stress conditions. Molecular dynamics simulations are an excellent tool to obtain a microscopic picture of how metal binding or methionine sulfoxidation alter the conformational preferences of α-synuclein and, hence, its aggregation propensity. In this work, we report the first coarse-grained molecular dynamics study comparing the conformational ensembles of the native protein, the protein bound to either Cu2+ or Ca2+ at its main binding sites, and the methionine-sulfoxidized protein. Our results suggest that these events alter the transient α-synuclein intramolecular contacts, inducing a greater solvent exposure of its hydrophobic, aggregation-prone NAC domain, in full agreement with a recent experimental study on Ca2+ binding. Moreover, metal-binding residues directly participate in the long-range contacts that shield this domain and regulate α-synuclein aggregation. These results provide a molecular-level rationalization of the enhanced fibrillation experimentally observed in the presence of Cu2+ or Ca2+ and the oligomerization induced by methionine sulfoxidation.
Collapse
Affiliation(s)
- Rafael Ramis
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain.
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Akerman SC, Hossain S, Shobo A, Zhong Y, Jourdain R, Hancock MA, George K, Breton L, Multhaup G. Neurodegenerative Disease-Related Proteins within the Epidermal Layer of the Human Skin. J Alzheimers Dis 2020; 69:463-478. [PMID: 31006686 DOI: 10.3233/jad-181191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence suggesting that amyloidogenic proteins might form deposits in non-neuronal tissues in neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. However, the detection of these aggregation-prone proteins within the human skin has been controversial. Using immunohistochemistry (IHC) and mass spectrometry tissue imaging (MALDI-MSI), fresh frozen human skin samples were analyzed for the expression and localization of neurodegenerative disease-related proteins. While α-synuclein was detected throughout the epidermal layer of the auricular samples (IHC and MALDI-MSI), tau and Aβ34 were also localized to the epidermal layer (IHC). In addition to Aβ peptides of varying length (e.g., Aβ40, Aβ42, Aβ34), we also were able to detect inflammatory markers within the same sample sets (e.g., thymosin β-4, psoriasin). While previous literature has described α-synuclein in the nucleus of neurons (e.g., Parkinson's disease), our current detection of α-synuclein in the nucleus of skin cells is novel. Imaging of α-synuclein or tau revealed that their presence was similar between the young and old samples in our present study. Future work may reveal differences relevant for diagnosis between these proteins at the molecular level (e.g., age-dependent post-translational modifications). Our novel detection of Aβ34 in human skin suggests that, just like in the brain, it may represent a stable intermediate of the Aβ40 and Aβ42 degradation pathway.
Collapse
Affiliation(s)
- S Can Akerman
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | | | - Mark A Hancock
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Kelly George
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.,L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Drosophila Alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage. Neuroreport 2019; 30:1039-1047. [PMID: 31503204 DOI: 10.1097/wnr.0000000000001323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AlkB family proteins are enzymes that repair alkylated DNA and RNA by oxidative demethylation. Nine homologs have been identified and characterized in mammals. ALKBH1 is conserved among metazoans including Drosophila. Although the ALKBH1 mouse homolog, Alkbh1 functions in neurogenesis, it currently remains unclear whether ALKBH1 plays a role in neuronal disorders induced by ultraviolet-induced DNA damage. We herein demonstrated that the Drosophila ALKBH1 homolog, AlkB contributed to recovery from neuronal disorders induced by ultraviolet damage. The knockdown of AlkB resulted in not only learning defects but also altered crawling behavior in Drosophila larvae after ultraviolet irradiation. A molecular analysis revealed that AlkB contributed to the repair of ultraviolet-induced DNA damage in the central nervous system of larvae. Therefore, we propose that ALKBH1 plays a role in the repair of ultraviolet-induced DNA damage in central nervous system. Ultraviolet-induced DNA damage is involved in the pathogenesis of xeroderma pigmentosum, and has recently been implicated in Parkinson's disease. The present results will contribute to our understanding of neuronal diseases induced by ultraviolet-induced DNA damage.
Collapse
|
11
|
Weihofen A, Liu Y, Arndt JW, Huy C, Quan C, Smith BA, Baeriswyl JL, Cavegn N, Senn L, Su L, Marsh G, Auluck PK, Montrasio F, Nitsch RM, Hirst WD, Cedarbaum JM, Pepinsky RB, Grimm J, Weinreb PH. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson's disease models. Neurobiol Dis 2019; 124:276-288. [DOI: 10.1016/j.nbd.2018.10.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
|
12
|
Ponzini E, De Palma A, Cerboni L, Natalello A, Rossi R, Moons R, Konijnenberg A, Narkiewicz J, Legname G, Sobott F, Mauri P, Santambrogio C, Grandori R. Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure. J Biol Chem 2019; 294:5657-5665. [PMID: 30755483 DOI: 10.1074/jbc.ra118.001907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or β-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.
Collapse
Affiliation(s)
- Erika Ponzini
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonella De Palma
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Lucilla Cerboni
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Rossana Rossi
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Rani Moons
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Albert Konijnenberg
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joanna Narkiewicz
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Giuseppe Legname
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Frank Sobott
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,the School of Molecular and Cellular Biology, University of Leeds, Leeds LS29JT, United Kingdom, and.,the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - PierLuigi Mauri
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Carlo Santambrogio
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| | - Rita Grandori
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| |
Collapse
|
13
|
Coelho-Cerqueira E, de Araújo Correia Campos C, Follmer C. Formation of large oligomers of DOPAL-modified α-synuclein is modulated by the oxidation of methionine residues located at C-terminal domain. Biochem Biophys Res Commun 2019; 509:367-372. [DOI: 10.1016/j.bbrc.2018.12.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
14
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
15
|
van Diggelen F, Tepper AWJW, Apetri MM, Otzen DE. α-Synuclein Oligomers: A Study in Diversity. Isr J Chem 2016. [DOI: 10.1002/ijch.201600116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Femke van Diggelen
- Crossbeta Biosciences; Padualaan 8 3584CH Utrecht The Netherlands
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| | | | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| |
Collapse
|
16
|
Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites. Nat Commun 2016; 7:10251. [PMID: 26807843 PMCID: PMC4737712 DOI: 10.1038/ncomms10251] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal α-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of α-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered α-Syn in cells. α-synuclein is a protein linked to the occurrence of Parkinson's disease. Here, the authors use time-resolved in-cell NMR spectroscopy to study the repair of methionine-oxidized α-synuclein by endogenous cellular enzymes.
Collapse
|
17
|
Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY, Araujo GDT, Pinheiro AS, Domont GB, Eliezer D. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 2015; 290:27660-79. [PMID: 26381411 DOI: 10.1074/jbc.m115.686584] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 01/15/2023] Open
Abstract
Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons.
Collapse
Affiliation(s)
- Cristian Follmer
- From the Departments of Physical Chemistry and the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | | | | | - Gabriel D T Araujo
- Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil and
| | - Anderson S Pinheiro
- Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil and
| | - Gilberto B Domont
- Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil and
| | - David Eliezer
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
18
|
Maturana MGV, Pinheiro AS, de Souza TLF, Follmer C. Unveiling the role of the pesticides paraquat and rotenone on α-synuclein fibrillation in vitro. Neurotoxicology 2014; 46:35-43. [PMID: 25447323 DOI: 10.1016/j.neuro.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Epidemiological data have suggested that exposure to environmental toxins might be associated with the etiology of Parkinson's disease (PD). In this context, certain agrochemicals are able to induce Parkinsonism in different animal models via the inhibition of mitochondrial complex I, which leads to an increase in both oxidative stress and the death of nigrostriatal neurons. Additionally, in vitro experiments have indicated that pesticides are capable of accelerating the fibrillation of the presynaptic protein α-synuclein (aS) by binding directly to the protein. However, the molecular details of these interactions are poorly understood. In the present work we demonstrate that paraquat and rotenone, two agrochemicals that lead to a Parkinsonian phenotype in vivo, bind to aS via solvent effects rather than through specific interactions. In fact, these compounds produced no significant effects on aS fibrillation under physiological concentrations of NaCl. NMR data suggest that paraquat interacts with the C-terminal domain of the disordered aS monomer. This interaction was markedly reduced in the presence of NaCl, presumably due to the disruption of electrostatic interactions between the protein and paraquat. Interestingly, the effects produced by short-term incubation of paraquat with aS on the protein conformation resembled those produced by incubating the protein with NaCl alone. Taken together, our data indicate that the effects of these agrochemicals on PD cannot be explained via direct interactions with aS, reinforcing the idea that the role of these compounds in PD is limited to the inhibition of mitochondrial complex I and/or the up-regulation of aS.
Collapse
Affiliation(s)
| | - Anderson Sá Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | | - Cristian Follmer
- Department of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|