1
|
Kobiita A, Godbersen S, Araldi E, Ghoshdastider U, Schmid MW, Spinas G, Moch H, Stoffel M. The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Rep 2021; 32:107846. [PMID: 32640216 DOI: 10.1016/j.celrep.2020.107846] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabetes susceptibility gene JAZF1 is a key transcriptional regulator of ribosome biogenesis, global protein, and insulin translation. JAZF1 is excluded from the nucleus, and its expression levels are reduced upon metabolic stress and in diabetes. Genetic deletion of Jazf1 results in global impairment of protein synthesis that is mediated by defects in ribosomal protein synthesis, ribosomal RNA processing, and aminoacyl-synthetase expression, thereby inducing ER stress and increasing β-cell susceptibility to apoptosis. Importantly, JAZF1 function and its pleiotropic actions are impaired in islets of murine T2D and in human islets exposed to metabolic stress. Our study identifies JAZF1 as a central mediator of metabolic stress in β-cells.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Elisa Araldi
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Umesh Ghoshdastider
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Giatgen Spinas
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Abstract
Among the 20 cytoplasmic aminoacyl-tRNA synthetases (aaRSs), alanyl-tRNA synthetase (AlaRS) has unique features. AlaRS is the only aaRS that exclusively recognizes a single G3:U70 wobble base pair in the acceptor stem of tRNA, which serves as the identity element for both the synthetic and the proofreading activities of the synthetase. The recognition is relaxed during evolution and eukaryotic AlaRS can mis-aminoacylate noncognate tRNAs with a G4:U69 base pair seemingly as a deliberate gain of function for unknown reasons. Unlike other class II aaRSs, dimerization of AlaRS is not necessarily required for aminoacylation possibly due to functional compensations from the C-terminal domain (C-Ala). In contrast to other 19 cytoplasmic aaRSs that append additional domains or motifs to acquire new functions during evolution, the functional expansion of AlaRS is likely achieved through transformations of the existing C-Ala. Given both essential canonical and diverse non-canonical roles of AlaRS, dysfunction of AlaRS leads to neurodegenerative disorders in human and various pathological phenotypes in mouse models. In this review, the uniqueness of AlaRS in both physiological and pathological events is systematically discussed, with a particular focus on its novel functions gained in evolution.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
3
|
Gallay L, Gayed C, Hervier B. Antisynthetase syndrome pathogenesis: knowledge and uncertainties. Curr Opin Rheumatol 2019; 30:664-673. [PMID: 30239350 DOI: 10.1097/bor.0000000000000555] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Antisynthetase syndrome (ASyS) is an acquired myopathy characterized by the presence of myositis-specific autoantibodies directed against tRNA-synthetases. ASyS is potentially life threatening due to lung involvement and treatment remains a challenge to date. With symptoms not limited to muscles but also involving lung, skin and joints, ASyS appears specific and has a particular pathogenesis, different from the other inflammatory myopathies. This review is intended to discuss the current understanding of ASyS pathogenesis, pointing its current knowledge and also the crucial prospects that may lead to critical improvement of ASyS care. RECENT FINDINGS Regarding ASyS pathogenesis, initiation of the disease seems to arise in a multifactorial context, with first lesions occurring within the lungs. This may lead to aberrant self-antigen exposure and tolerance breakdown. The consequences are abnormal activation of both innate and adaptive immunity, resulting in the patients with favourable genetic background to autoimmune-mediated organ lesions. Immune and nonimmune roles of the antigen, as well as antigen presentation leading to specific T-cell and B-cell activation and to the production of specific autoantibodies belong to the disease process. SUMMARY This work aims to detail ASyS pathogenesis understanding, from initiation to the disease propagation and target tissue lesions, in order to considering future treatment directions.
Collapse
Affiliation(s)
- Laure Gallay
- Département de Médecine Interne et Immunologie Clinique, Centre Hospitalo-Universitaire Edouard Herriot, Hospices Civils de Lyon.,INMG, CNRS UMR 5310 - INSERM U1217, University Claude Bernard, Lyon 1
| | - Catherine Gayed
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses
| | - Baptiste Hervier
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses.,Département de Médecine Interne et Immunologie Clinique, Centre National de Référence des Maladies Musculaires, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Yi L, Swensen AC, Qian WJ. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res 2018; 201:13-25. [PMID: 30144424 PMCID: PMC6177288 DOI: 10.1016/j.trsl.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes (T1D) culminates in the autoimmune destruction of the pancreatic βcells, leading to insufficient production of insulin and development of hyperglycemia. Serum biomarkers including a combination of glucose, glycated molecules, C-peptide, and autoantibodies have been well established for the diagnosis of T1D. However, these molecules often mark a late stage of the disease when ∼90% of the pancreatic insulin-producing β-cells have already been lost. With the prevalence of T1D increasing worldwide and because of the physical and psychological burden induced by this disease, there is a great need for prognostic biomarkers to predict T1D development or progression. This would allow us to identify individuals at high risk for early prevention and intervention. Therefore, considerable efforts have been dedicated to the understanding of disease etiology and the discovery of novel biomarkers in the last few decades. The advent of high-throughput and sensitive "-omics" technologies for the study of proteins, nucleic acids, and metabolites have allowed large scale profiling of protein expression and gene changes in T1D patients relative to disease-free controls. In this review, we briefly discuss the classical diagnostic biomarkers of T1D but mainly focus on the novel biomarkers that are identified as markers of β-cell destruction and screened with the use of state-of-the-art "-omics" technologies.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
5
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Koo BK, Chae S, Kim KM, Kang MJ, Kim EG, Kwak SH, Jung HS, Cho YM, Choi SH, Park YJ, Shin CH, Jang HC, Shin CS, Hwang D, Yi EC, Park KS. Identification of novel autoantibodies in type 1 diabetic patients using a high-density protein microarray. Diabetes 2014; 63:3022-32. [PMID: 24947363 DOI: 10.2337/db13-1566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Autoantibodies can facilitate diagnostic and therapeutic means for type 1 diabetes (T1DM). We profiled autoantibodies from serum samples of 16 T1DM patients, 16 type 2 diabetic (T2DM) patients, and 27 healthy control subjects with normal glucose tolerance (NGT) by using protein microarrays containing 9,480 proteins. Two novel autoantibodies, anti-EEF1A1 and anti-UBE2L3, were selected from microarrays followed by immunofluorescence staining of pancreas. We then tested the validity of the candidates by ELISA in two independent test cohorts: 1) 95 adults with T1DM, 49 with T2DM, 11 with latent autoimmune diabetes in adults (LADA), 20 with Graves disease, and 66 with NGT and 2) 33 children with T1DM and 34 healthy children. Concentrations of these autoantibodies were significantly higher in T1DM patients than in NGT and T2DM subjects (P < 0.01), which was also confirmed in the test cohort of children (P < 0.05). Prevalence of anti-EEF1A1 and anti-UBE2L3 antibodies was 29.5% and 35.8% in T1DM, respectively. Of note, 40.9% of T1DM patients who lack anti-GAD antibodies (GADA) had anti-EEF1A1 and/or anti-UBE2L3 antibodies. These were also detected in patients with fulminant T1DM but not LADA. Our approach identified autoantibodies that can provide a new dimension of information indicative of T1DM independent of GADA and new insights into diagnosis and classification of T1DM.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Internal Medicine, Boramae Medical Center, Seoul, Korea
| | - Sehyun Chae
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - Kristine M Kim
- Department of Systems Immunology, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eunhee G Kim
- Department of Systems Immunology, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea Center for Systems Biology of Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 2013; 9:145-53. [PMID: 23416400 DOI: 10.1038/nchembio.1158] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/25/2022]
Abstract
Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid-binding site for another purpose.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
8
|
Abstract
Biomarkers are useful tools for research into type 1 diabetes (T1D) for a number of purposes, including elucidation of disease pathogenesis, risk prediction, and therapeutic monitoring. Susceptibility genes and islet autoantibodies are currently the most useful biomarkers for T1D risk prediction. However, these markers do not fully meet the needs of scientists and physicians for several reasons. First, improvement of the specificity and sensitivity is still desirable to achieve better positive predictive values. Second, autoantibodies appear relatively late in the disease process, thus limiting their value in early disease prediction. Third, the currently available biomarkers are not useful for assessing therapeutic outcomes because some are not involved in the disease process (autoantibodies) and others do not change during disease progression (susceptibility genes). Therefore, considerable effort has been devoted to the discovery of novel T1D biomarkers in the last three decades. The advent of high-throughput technologies for genetic, transcriptomic, and proteomic studies has allowed genome-wide examinations of genetic polymorphisms, global gene changes, and protein expression changes in T1D patients and prediabetic subjects. These large-scale studies resulted in the discovery of a large number of susceptibility genes and changes in gene and protein expression. While these studies have provided a number of novel biomarker candidates, their clinical benefits remain to be evaluated in prospective studies, and no new "star biomarker" has been identified until now. Previous studies suggest that significant improvements in study design and analytical methodologies have to be made to identify clinically relevant biomarkers. In this review, we discuss progress, opportunities, challenges, and future directions in the development of T1D biomarkers, mainly by focusing on the genetic, transcriptomic, and proteomic aspects.
Collapse
Affiliation(s)
- Yulan Jin
- Center for Biotechnology and Genomic Medicine and Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | |
Collapse
|
9
|
Watanabe K, Handa T, Tanizawa K, Hosono Y, Taguchi Y, Noma S, Kobashi Y, Kubo T, Aihara K, Chin K, Nagai S, Mimori T, Mishima M. Detection of antisynthetase syndrome in patients with idiopathic interstitial pneumonias. Respir Med 2011; 105:1238-47. [DOI: 10.1016/j.rmed.2011.03.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/19/2011] [Accepted: 03/30/2011] [Indexed: 01/08/2023]
|
10
|
Abstract
BACKGROUND Type 1 diabetes (T1DM) results from cell-mediated autoimmune destruction of the β cells of the islets of Langerhans. Autoantibodies directed against the islets are useful clinical tools that allow the recognition and confirmation of β-cell autoimmunity. CONTENT In this review we define the term "islet autoantibody," describe the pathogenesis of autoantibody generation, and explain the uses of islet autoantibodies in clinical medicine and in research studies that concern the interruption or prevention of T1DM. We also discuss the biology of islet autoantibodies and their rates of appearance at the time of onset of T1DM and their appearance before the development of T1DM. SUMMARY The presence of islet autoantibodies in persons with diabetes confirms an autoimmune etiology. In nondiabetic individuals, islet autoantibodies are strong predictors of the later development of T1DM.
Collapse
Affiliation(s)
- William E Winter
- Department of Pathology, University of Florida, Gainesville, FL 32610-0275, USA.
| | | |
Collapse
|