1
|
Ayesha M, Majid A, Zhao D, Greenaway FT, Yan N, Liu Q, Liu S, Sun MZ. MiR-4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A. J Adv Res 2022; 36:147-161. [PMID: 35127170 PMCID: PMC8799875 DOI: 10.1016/j.jare.2021.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Munawar Ayesha
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Abbasi Majid
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Dongting Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Frederick T. Greenaway
- Department of Biochemistry and Molecular Biology, Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Naimeng Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qinlong Liu
- Department of General Surgery, the Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Shuqing Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
- Corresponding authors.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
- Corresponding authors.
| |
Collapse
|
2
|
Crezee T, Tesselaar MH, Jaeger M, Rabold K, Corver WE, Morreau H, Van Engen-Van Grunsven ACH, Smit JWA, Netea-Maier RT, Plantinga TS. IGF2 is a potential factor in RAI-refractory differentiated thyroid cancer. Oncol Lett 2021; 22:590. [PMID: 34149901 PMCID: PMC8200939 DOI: 10.3892/ol.2021.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Differentiated thyroid cancer (DTC) is the most frequent endocrine tumor with a good prognosis after primary treatment in most cases. By contrast, 30–40% of patients with metastatic DTC are unresponsive to 131I radioactive iodide (RAI) treatment due to tumor dedifferentiation. Currently, underlying molecular mechanisms of dedifferentiation remain elusive and predictive biomarkers are lacking. Therefore, the present study aimed to identify molecular biomarkers in primary tumors associated with RAI refractoriness. A retrospective cohort was gathered consisting of RAI-sensitive patients with DTC and RAI-refractory patients with poorly DTC. In all patients, extensive intratumoral mutation profiling, gene fusions analysis, telomerase reverse transcriptase (TERT) promoter mutation analysis and formalin-fixed paraffin-embedded-compatible RNA sequencing were performed. Genetic analyses revealed an increased mutational load in RAI-refractory DTC, including mutations in AKT1, PTEN, TP53 and TERT promoter. Transcriptomic analyses revealed profound differential expression of insulin-like growth factor 2 (IGF2), with up to 100-fold higher expression in RAI-refractory DTC compared with in RAI-sensitive DTC cases. ELISA revealed significant lower IGF2 plasma concentrations after surgery and subsequent 131I RAI therapy in patients with DTC compared with pretreatment baseline. Overall, the current findings suggested that the tumor-promoting growth factor IGF2 may have a potential role in acquiring RAI refractoriness.
Collapse
Affiliation(s)
- Thomas Crezee
- Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marika H Tesselaar
- Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Martin Jaeger
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.,Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Jan W A Smit
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
Waly AA, El-Ekiaby N, Assal RA, Abdelrahman MM, Hosny KA, El Tayebi HM, Esmat G, Breuhahn K, Abdelaziz AI. Methylation in MIRLET7A3 Gene Induces the Expression of IGF-II and Its mRNA Binding Proteins IGF2BP-2 and 3 in Hepatocellular Carcinoma. Front Physiol 2019; 9:1918. [PMID: 30733684 PMCID: PMC6353855 DOI: 10.3389/fphys.2018.01918] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
miR-let-7a is a tumor suppressor miRNA with reduced expression in most cancers. Methylation of MIRLET7A3 gene was reported to be the cause of this suppression in several cancers; however, it was not explicitly investigated in hepatocellular carcinoma (HCC). We aimed at investigating miR-let-7a expression and molecular mode in HCC, identifying drug-targetable networks, which might be affected by its abundance. Our results illustrated a significant repression of miR-let-7a, which correlated with hypermethylation of its gene of origin MIRLRT7A3. This was further supported by the induction of miR-let-7a expression upon treatment of HCC cells with a DNA-methyltransferase inhibitor. Using a computational approach, insulin-like growth factor (IGF)-II and IGF-2 mRNA binding proteins (IGF2BP)-2/-3 were identified as potential targets for miR-let-7a that was further confirmed experimentally. Indeed, miR-let-7a mimics diminished IGF-II as well as IGF2BP-2/-3 expression. Direct binding of miR-let-7a to each respective transcript was confirmed using a luciferase reporter assay. In conclusion, this study suggests that DNA hypermethylation leads to epigenetic repression of miR-let-7a in HCC cells, which induces the oncogenic IGF-signaling pathway.
Collapse
Affiliation(s)
- Amr A. Waly
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | | | - Reem A. Assal
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | | | - Karim A. Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend M. El Tayebi
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Molecular Hepatopathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ahmed I. Abdelaziz
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
- School of Medicine, Newgiza University, Cairo, Egypt
| |
Collapse
|
4
|
Vacante F, Senesi P, Montesano A, Paini S, Luzi L, Terruzzi I. Metformin Counteracts HCC Progression and Metastasis Enhancing KLF6/p21 Expression and Downregulating the IGF Axis. Int J Endocrinol 2019; 2019:7570146. [PMID: 30774659 PMCID: PMC6350585 DOI: 10.1155/2019/7570146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is the common tumor of the liver. Unfortunately, most HCC seem to be resistant to conventional chemotherapy and radiotherapy. The poor efficacy of antitumor agents is also due, at least in part, to the inefficient drug delivery and metabolism exerted by the steatotic/cirrhotic liver that hosts the tumor. Thus, novel approaches in chemotherapy may be needed to improve the survival rate in patients with HCC. Metformin (METF) has been found to lower HCC risk; however, the mechanisms by which METF performs its anticancer activity are not completely elucidated. Previous studies have showed METF action on growth inhibition in the liver in a dose/time-dependent manner and its antitumor role by targeting multiple pathways. We investigated molecular effects of METF in an in vitro human hepatoma model (HepG2), studying cell cycle regulators, tumorigenesis markers, and insulin-like growth factor (IGF) axis regulation. MATERIALS AND METHODS HepG2 cells were treated with METF (400 μM) for 24, 48, and 72 hours. METF action on cell cycle progression and cellular pathways involved in metabolism regulation was evaluated by gene expression analysis, immunofluorescence, and Western blot assay. RESULTS By assessing HepG2 cell viability, METF significantly decreased growth cell capacity raising KLF6/p21 protein content. Moreover, METF ameliorated the cancer microenvironment reducing cellular lipid drop accumulation and promoting AMPK activity. The overexpression of IGF-II molecule and the IGF-I receptor that plays a main role in HCC progression was counteracted by METF. Furthermore, the protein content of HCC principal tumor markers, CK19 and OPN, linked to the metastasis process was significantly reduced by METF stimulus. CONCLUSION Our data show that METF could suppress HepG2 proliferation, through induction of cell cycle arrest at the G0/G1 phase. In addition, METF effect on the cancer microenvironment and on the IGF axis leads to the development of new METF therapeutic use in HCC treatment.
Collapse
Affiliation(s)
- Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Paini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Livio Luzi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
6
|
Yao M, Wang L, Yang J, Yan X, Cai Y, Yao D. IGF-I receptor as an emerging potential molecular-targeted for hepatocellular carcinoma in vitro and in vivo. Tumour Biol 2016; 37:14677-14686. [DOI: 10.1007/s13277-016-5296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
|
7
|
Habashy DA, El Tayebi HM, Fawzy IO, Hosny KA, Esmat G, Abdelaziz AI. Interplay between microRNA-17-5p, insulin-like growth factor-II through binding protein-3 in hepatocellular carcinoma. World J Hepatol 2016; 8:976-984. [PMID: 27621763 PMCID: PMC4990761 DOI: 10.4254/wjh.v8.i23.976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/01/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of microRNA on insulin-like growth factor binding protein-3 (IGFBP-3) and hence on insulin-like growth factor-II (IGF-II) bioavailability in hepatocellular carcinoma (HCC). METHODS Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mirVana miRNA Isolation Kit. microRNA-17-5p (miR-17-5p) expression was mimicked and antagonized in HuH-7 cell lines using HiPerFect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cDNA followed by quantification of miR-17-5p and IGFBP-3 expression using TaqMan real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3'UTR of IGFBP-3. Free IGF-II protein was measured in transfected HuH-7 cells using IGF-II ELISA kit. RESULTS Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where miR-17-5p was extensively underexpressed in HCC tissues (P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients (P = 0.0041) compared to healthy donors. Forcing miR-17-5p expression in HuH-7 cell lines showed a significant downregulation of IGFBP-3 mRNA expression (P = 0.0267) and a significant increase in free IGF-II protein (P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of miR-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone (P = 0.0474). CONCLUSION These data suggest that regulating IGF-II bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of miRNAs.
Collapse
Affiliation(s)
- Danira Ashraf Habashy
- Danira Ashraf Habashy, Hend Mohamed El Tayebi, Injie Omar Fawzy, Department of Pharmacology and Toxicology, German University in Cairo, Main Entrance Al Tagamoa Al Khames, Cairo 11835, Egypt
| | - Hend Mohamed El Tayebi
- Danira Ashraf Habashy, Hend Mohamed El Tayebi, Injie Omar Fawzy, Department of Pharmacology and Toxicology, German University in Cairo, Main Entrance Al Tagamoa Al Khames, Cairo 11835, Egypt
| | - Injie Omar Fawzy
- Danira Ashraf Habashy, Hend Mohamed El Tayebi, Injie Omar Fawzy, Department of Pharmacology and Toxicology, German University in Cairo, Main Entrance Al Tagamoa Al Khames, Cairo 11835, Egypt
| | - Karim Adel Hosny
- Danira Ashraf Habashy, Hend Mohamed El Tayebi, Injie Omar Fawzy, Department of Pharmacology and Toxicology, German University in Cairo, Main Entrance Al Tagamoa Al Khames, Cairo 11835, Egypt
| | - Gamal Esmat
- Danira Ashraf Habashy, Hend Mohamed El Tayebi, Injie Omar Fawzy, Department of Pharmacology and Toxicology, German University in Cairo, Main Entrance Al Tagamoa Al Khames, Cairo 11835, Egypt
| | - Ahmed Ihab Abdelaziz
- Danira Ashraf Habashy, Hend Mohamed El Tayebi, Injie Omar Fawzy, Department of Pharmacology and Toxicology, German University in Cairo, Main Entrance Al Tagamoa Al Khames, Cairo 11835, Egypt
| |
Collapse
|
8
|
El Tayebi HM, Abdelaziz AI. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma. World J Gastroenterol 2016; 22:2668-2677. [PMID: 26973407 PMCID: PMC4777991 DOI: 10.3748/wjg.v22.i9.2668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/29/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway is an important pathway in the process of hepatocarcinogenesis, and the IGF network is clearly dysregulated in many cancers and developmental abnormalities. In hepatocellular carcinoma (HCC), only a minority of patients are eligible for curative treatments, such as tumor resection or liver transplant. Unfortunately, there is a high recurrence of HCC after surgical tumor removal. Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems. In this review, we shed lights on the regulation of members of the IGF axis, mainly by microRNAs in HCC. MicroRNAs in HCC attempt to halt the aberrant expression of the IGF network, and a single microRNA can have multiple downstream targets in one or more signaling pathways. Targeting microRNAs is a relatively new approach for identifying an efficient radical cure for HCC.
Collapse
|
9
|
Kozłowska J, Mikuła T, Suchacz M, Jabłnońska J, Stańczak W, Cianciara J, Wiercińska-Drapało A. Pigment epithelium-derived factor and matrix metalloproteinase-9 in liver cirrhosis. Saudi J Gastroenterol 2016; 22:375-379. [PMID: 27748324 PMCID: PMC5051222 DOI: 10.4103/1319-3767.191143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/AIM The aim of this study was to assess the role of serum pigment epithelium-derived factor (PEDF) and matrix metalloproteinase-9 (MMP-9) in progression of liver cirrhosis and development of hepatocellular carcinoma (HCC). PATIENTS AND METHODS Serum levels of PEDF and MMP-9 were tested in 212 patients with liver cirrhosis and in a control group of 30 healthy volunteers. HCC was diagnosed in 45 of the 212 patients studied (21%). RESULTS Serum PEDF and MMP-9 were higher in the study group than that in the control group (P < 0.001). In patients with alcoholic or mixed (alcoholic and viral hepatitis-related) cirrhosis, serum PEDF was higher than that in other patients (13970.2 ± 13406.9 ng/ml vs. 8563.5 ± 9602.7 ng/ml, P = 0.008). In patients with viral hepatitis-related cirrhosis, significantly higher PEDF levels were recorded in those with HCC (13429.1 ± 12045.8) than that in patients without HCC (6660.1 ± 7927.1; P = 0.04). There was a trend for higher serum MMP-9 in patients with HCC (5778.7 ± 12426.6 vs. 1389.8 ± 1944.7 in those without HCC; P = 0.07). Significant negative correlation between serum MMP-9 and serum alpha-fetoprotein in patients with HCC was observed (r = -0.54; P = 0.04). CONCLUSION Serum PEDF and MMP-9 could be auxiliary markers in diagnosis of HCC, especially in patients with low alpha-fetoprotein level. Alcohol consumption can affect serum PEDF.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland,Address for correspondence: Dr. Kozłowska Joanna, Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, 01-201 Warsaw, Wolska 37, Poland. E-mail:
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Suchacz
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jabłnońska
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Stańczak
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Cianciara
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Hu B, Sun D, Sun C, Sun YF, Sun HX, Zhu QF, Yang XR, Gao YB, Tang WG, Fan J, Maitra A, Anders RA, Xu Y. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 468:525-532. [PMID: 26482853 DOI: 10.1016/j.bbrc.2015.10.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Ding Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Chao Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Hai-Xiang Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Qing-Feng Zhu
- The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD, 21205, USA; Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Ya-Bo Gao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Wei-Guo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China; Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Anirban Maitra
- The Sol Goldman Pancreatic Cancer Research Center, Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert A Anders
- The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD, 21205, USA.
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
11
|
Espelund U, Grønbæk H, Villadsen GE, Simonsen K, Vestergaard PF, Jørgensen JOL, Flyvbjerg A, Vilstrup H, Frystyk J. The Circulating IGF System in Hepatocellular Carcinoma: The Impact of Liver Status and Treatment. Growth Horm IGF Res 2015; 25:174-181. [PMID: 26068014 DOI: 10.1016/j.ghir.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous studies have demonstrated an elevated IGF-II mRNA expression and protein levels in tumors and blood from patients with hepatocellular carcinoma (HCC), hereby suggesting a role of IGF-II as a pathogenic marker of HCC. We hypothesized that in HCC, an increased IGF-II secretion would translate into an elevated circulating IGF bioactivity, which would normalize following treatment. METHODS Patients with HCC (n=39) were studied before and after radio-frequency ablation and/or transarterial chemo-embolization. Baseline data were compared to healthy subjects (n=150) and patients with liver cirrhosis (n=41). Serum levels of IGF ligands and IGF binding proteins (IGFBPs) were determined using gold standard methods as well as novel assays and compared to liver function tests and HCC treatment status. RESULTS At baseline, HCC patients differed from cirrhosis patients and healthy controls regarding IGF-I (29 [23-37] vs. 12 [7-19] vs. 109 [103-116] μg/l), IGF-II (254 [224-288] vs. 118 [102-137] vs. 545 [525-566] μg/l) and IGF bioactivity (0.53 [0.41-0.68] vs. 0.29 [0.24-0.34] vs. 1.43 [1.33-1.53] μg/l) (mean [95% confidence interval], all age-adjusted P<0.001). All variables but IGFBP-2 were strongly associated with liver status (MELD score), and accordingly, differences were either attenuated or disappeared when adjusted for MELD score. There was no effect of treatment on any IGF variables. CONCLUSIONS The marked differences in IGF and IGFBP levels between patients with HCC, liver cirrhosis and healthy subjects are mainly explained by variations in liver status. Therefore, this study questions the clinical utility of circulating IGF variables as markers of HCC.
Collapse
Affiliation(s)
- Ulrick Espelund
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gerda Elisabeth Villadsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kira Simonsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Allan Flyvbjerg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
12
|
Dong Y, Li J, Han F, Chen H, Zhao X, Qin Q, Shi R, Liu J. High IGF2 expression is associated with poor clinical outcome in human ovarian cancer. Oncol Rep 2015; 34:936-42. [PMID: 26063585 DOI: 10.3892/or.2015.4048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is one of the most common types of cancer in females and is the leading cause of death among gynaecological cancers in women worldwide. In the present study, we identified insulin-like growth factor 2 (IGF2) as a differentially expressed gene between cancerous and non-cancerous ovarian tissues. IGF2 was frequently increased in the human ovarian cancers when compared to the frequency in the non-cancerous ovarian tissues both at the mRNA (30/35) and protein level (61/72). The mean level of IGF2 in the tumor tissues was markedly higher than that in the non-cancerous tissues (nearly 3-fold change) (P=0.000). There was a significant correlation of IGF2 expression with histological grade (P=0.047). Kaplan-Meier analysis indicated that the ovarian cancer patients with high IGF2 expression showed a poorer prognosis both in regards to overall survival (OS) and progression-free survival (PFS) (n=1,648, P=0.000). Further analysis revealed that high expression of IGF2 was an unfavorable factor for the prognosis of the ovarian cancer patients at clinical stage I + II, stage III, histological grade 2, grade 3 or those treated with chemotherapy containing platin and Taxol. Our data provide evidence that IGF2 expression is frequently increased in ovarian cancer tissues, and high expression of IGF2 may be a significant prognostic factor for poor survival in ovarian cancer patients.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Xiaoxin Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Qin Qin
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ronghui Shi
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
13
|
Xie HY, Xing CY, Wei BJ, Xu X, Wu J, Chen LM, Cao GQ, Chen H, Chen KJ, Yin SY, Wu LM, Zhou L, Zheng SS. Association of IGF1R polymorphisms with the development of HBV-related hepatocellular carcinoma. TISSUE ANTIGENS 2014; 84:264-270. [PMID: 24758241 DOI: 10.1111/tan.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/04/2014] [Accepted: 03/25/2014] [Indexed: 02/05/2023]
Abstract
Although the involvement of insulin-like signaling in cancer has been well documented in various types of cancers, the association between the genetic variants in the insulin-like signaling and the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains unclear. In this study, a total of 498 individuals including 173 HBV related cirrhosis patients, 171 HBV-related HCC patients, and 154 healthy controls were enrolled. Sixteen single nucleotide polymorphisms (SNPs) in IGF1, IGF2, IGF1R and IGF2R have been genotyped by employing SNaPshot assays. We found A/A genotype at rs3743251 of IGF1R was negatively associated with HBV related HCC [odds ratio (OR) = 0.38, 95% confidence interval (CI) = 0.20-0.72, P = 0.037]; A/G genotype decreased the risk of portal vein thrombosis (OR = 0.38, 95%CI = 0.18-0.82, P = 0.01). These results indicate that rs3743251 polymorphism in IGF1R is associated with the susceptibility of HBV-related HCC.
Collapse
Affiliation(s)
- H-Y Xie
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health. Key Laboratory of Organ Transplantation, Collaborative innovation center for Diagnosis treatment of infectious diseases, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dong Z, Yao M, Wang L, Yan X, Gu X, Shi Y, Yao N, Qiu L, Wu W, Yao D. Abnormal expression of insulin-like growth factor-I receptor in hepatoma tissue and its inhibition to promote apoptosis of tumor cells. Tumour Biol 2014; 34:3397-405. [PMID: 23797814 DOI: 10.1007/s13277-013-0912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Abnormal signaling of insulin-like growth factor I receptor (IGF-IR) is associated with hepatocellular carcinoma, but the underlying molecular mechanisms remain largely unknown. The objective of this study was to investigate IGF-IR's role as a signaling molecule, its pathological alteration in hepatoma tissues, and its effect on hepatoma cell proliferation when inhibited. As measured by immunohistochemical analysis, the incidence of hepatic IGF-IR expression in cancerous tissue was 80.0 % (24 of 30), which was significantly higher (P < 0.05) than 43.3 % (13 of 30) occurrence in the surrounding tissue and the nondetectable (0 of 30) frequency in the distal cancerous tissue. Hepatoma IGF-IR expression was correlated to the differentiation degree and not to the number or size of tumors, HBV infection, and AFP level. The in vitro IGF-IR expression in hepatoma cells was down-regulated significantly by picropodophyllin, a specific kinase inhibitor, in a time- and dose-dependent manner. Cell proliferation was inhibited through typical mechanisms of promoting apoptosis and cell cycle arrest (G2/M phase). Up-regulation of IGF-IR in hepatocarcinogenesis suggests that the down-regulation of IGF-IR expression could be a specific molecular target for hepatoma cell proliferation.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Female
- G2 Phase Cell Cycle Checkpoints/drug effects
- G2 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Immunohistochemistry
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Molecular Sequence Data
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
|
15
|
Abstract
Insulin-like growth factor 2 (IGF2) is a 7.5 kDa mitogenic peptide hormone expressed by liver and many other tissues. It is three times more abundant in serum than IGF1, but our understanding of its physiological and pathological roles has lagged behind that of IGF1. Expression of the IGF2 gene is strictly regulated. Over-expression occurs in many cancers and is associated with a poor prognosis. Elevated serum IGF2 is also associated with increased risk of developing various cancers including colorectal, breast, prostate and lung. There is established clinical utility for IGF2 measurement in the diagnosis of non-islet cell tumour hypoglycaemia, a condition characterised by a molar IGF2:IGF1 ratio >10. Recent advances in understanding of the pathophysiology of IGF2 in cancer have suggested much novel clinical utility for its measurement. Measurement of IGF2 in blood and genetic and epigenetic tests of the IGF2 gene may help assess cancer risk and prognosis. Further studies will determine whether these tests enter clinical practice. New therapeutic approaches are being developed to target IGF2 action. This review provides a clinical perspective on IGF2 and an update on recent research findings.
Collapse
Affiliation(s)
- Callum Livingstone
- Peptide Hormones Supraregional Assay Service (SAS), Clinical Biochemistry Department, Royal Surrey County Hospital NHS Trust, Guildford, Surrey GU2 7XX, UK Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK
| |
Collapse
|
16
|
Wright JH, Johnson MM, Shimizu-Albergine M, Bauer RL, Hayes BJ, Surapisitchat J, Hudkins KL, Riehle KJ, Johnson SC, Yeh MM, Bammler TK, Beyer RP, Gilbertson DG, Alpers CE, Fausto N, Campbell JS. Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice: evidence for stromal induction of hepatocellular carcinoma. Int J Cancer 2013; 134:778-88. [PMID: 23929039 DOI: 10.1002/ijc.28421] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Cirrhosis is the primary risk factor for the development of hepatocellular carcinoma (HCC), yet the mechanisms by which cirrhosis predisposes to carcinogenesis are poorly understood. Using a mouse model that recapitulates many aspects of the pathophysiology of human liver disease, we explored the mechanisms by which changes in the liver microenvironment induce dysplasia and HCC. Hepatic expression of platelet-derived growth factor C (PDGF-C) induces progressive fibrosis, chronic inflammation, neoangiogenesis and sinusoidal congestion, as well as global changes in gene expression. Using reporter mice, immunofluorescence, immunohistochemistry and liver cell isolation, we demonstrate that receptors for PDGF-CC are localized on hepatic stellate cells (HSCs), which proliferate, and transform into myofibroblast-like cells that deposit extracellular matrix and lead to production of growth factors and cytokines. We demonstrate induction of cytokine genes at 2 months, and stromal cell-derived hepatocyte growth factors that coincide with the onset of dysplasia at 4 months. Our results support a paracrine signaling model wherein hepatocyte-derived PDGF-C stimulates widespread HSC activation throughout the liver leading to chronic inflammation, liver injury and architectural changes. These complex changes to the liver microenvironment precede the development of HCC. Further, increased PDGF-CC levels were observed in livers of patients with nonalcoholic fatty steatohepatitis and correlate with the stage of disease, suggesting a role for this growth factor in chronic liver disease in humans. PDGF-C transgenic mice provide a unique model for the in vivo study of tumor-stromal interactions in the liver.
Collapse
|
17
|
Xiong ZP, Huang F, Lu MH. Association between insulin-like growth factor-2 expression and prognosis after transcatheter arterial chemoembolization and octreotide in patients with hepatocellular carcinoma. Asian Pac J Cancer Prev 2013; 13:3191-4. [PMID: 22994732 DOI: 10.7314/apjcp.2012.13.7.3191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the association between the change of IGF-2 level in serum after transcatheter arterial chemoembolization (TACE) and hepatocellular carcinoma (HCC) progression, especially in relation to metastasis. METHODS IGF-2 in serum was measured by quantitative sandwich enzyme-linked immunosorbent assay before, 3 days and 4 weeks after TACE in 60 patients with HCC. The occurrence of HCC metastasis was also evaluated, 3 months after TACE. RESULTS (1) The average serum level of IGF-2 in the 60 patients with HCC was 136.5 ± 87.3 pg/ml; (2) A tendency for increase was observed with heterogenous uptake of octreotide and portal vein thrombosis. Metastatic foci were found in 37/38 patients in the group with IGF-2 increasing (97.0%), in contrast to 3/22 (13.6%) patients with IGF-2 decrease. CONCLUSION The increase of IGF-2 level in serum appears to be associated with the occurrence of metastatic HCC after TACE and chemotherapy.
Collapse
Affiliation(s)
- Zheng-Ping Xiong
- Department of Interventional Radiology, Hunan Provincial Tumor Hospital, Changsha, China
| | | | | |
Collapse
|
18
|
Djiogue S, Nwabo Kamdje AH, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi Y, Seke Etet PF. Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer 2013; 20:R1-R17. [PMID: 23207292 DOI: 10.1530/erc-12-0324] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin, IGF1, and IGF2 are the most studied insulin-like peptides (ILPs). These are evolutionary conserved factors well known as key regulators of energy metabolism and growth, with crucial roles in insulin resistance-related metabolic disorders such as obesity, diseases like type 2 diabetes mellitus, as well as associated immune deregulations. A growing body of evidence suggests that insulin and IGF1 receptors mediate their effects on regulating cell proliferation, differentiation, apoptosis, glucose transport, and energy metabolism by signaling downstream through insulin receptor substrate molecules and thus play a pivotal role in cell fate determination. Despite the emerging evidence from epidemiological studies on the possible relationship between insulin resistance and cancer, our understanding on the cellular and molecular mechanisms that might account for this relationship remains incompletely understood. The involvement of IGFs in carcinogenesis is attributed to their role in linking high energy intake, increased cell proliferation, and suppression of apoptosis to cancer risks, which has been proposed as the key mechanism bridging insulin resistance and cancer. The present review summarizes and discusses evidence highlighting recent advances in our understanding on the role of ILPs as the link between insulin resistance and cancer and between immune deregulation and cancer in obesity, as well as those areas where there remains a paucity of data. It is anticipated that issues discussed in this paper will also recover new therapeutic targets that can assist in diagnostic screening and novel approaches to controlling tumor development.
Collapse
Affiliation(s)
- Sefirin Djiogue
- Department of Animal Biology and Physiology, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| | | | | | | | | | | | | |
Collapse
|
19
|
Dong ZZ, Yan XD, Yao M, Yan MJ, Wang L, Qiu LW, Wu W, Yao DF. Association between expression of key insulin-like growth factor signaling molecules and malignant transformation of hepatocytes. Shijie Huaren Xiaohua Zazhi 2012; 20:2992-2999. [DOI: 10.11569/wcjd.v20.i31.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the dynamic expression of key insulin-like growth factor (IGF) signaling IGF-Ⅱ and IGF-Ⅰreceptor (IGF-IR) during malignant transformation of rat hepatocytes.
METHODS: Hepatoma was induced in male Sprague-Dawley rats with 2-fluorenylacetamide (2-FAA). Morphological changes of the liver were observed, and dynamic changes in the levels of IGF-Ⅱ and IGF-1R in the liver and serum were quantitatively analyzed. The expression and distribution of IGF-Ⅱ and IGF-1R proteins were analyzed by immunohistochemistry. Serum IGF-1R and IGF-II levels were detected by ELISA. Expression of IGF-Ⅱ and IGF-IR mRNAs in the liver was detected by nested RT-PCR and confirmed by DNA sequencing.
RESULTS: After induction with 2-FAA, rat hepatocytes showed granule-like degeneration, atypical hyperplasia, and malignant transformation, and hepatic total RNA, IGF-1R, and IGF-Ⅱ levels significantly increased. The levels of IGF-Ⅱ in the liver (F = 48.1, P < 0.01) and serum (F = 13.2, P < 0.01) were significantly higher in the hepatoma group than in any of other groups. There was a positive relationship (r = 0.97, t = 5.97, P < 0.01) between liver IGF-II (nmol/mg wet liver) and serum IGF-Ⅱ (nmol/L). Similar results were also obtained for IGF-IR in the liver and serum, and IGF-IR expression in the hepatoma group was significantly higher (P < 0.01) than that in any of other groups.
CONCLUSION: IGF-1R and IGF-Ⅱ may participate in hepatocyte canceration. Overexpression of IGF-1R and IGF-Ⅱ might be useful molecular markers for early diagnosis and prognosis of hepatocellular carcinoma.
Collapse
|
20
|
Aleem E, Elshayeb A, Elhabachi N, Mansour AR, Gowily A, Hela A. Serum IGFBP-3 is a more effective predictor than IGF-1 and IGF-2 for the development of hepatocellular carcinoma in patients with chronic HCV infection. Oncol Lett 2011; 3:704-712. [PMID: 22740980 DOI: 10.3892/ol.2011.546] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/19/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) contributes to 14.8% of all cancer mortality in Egypt, which has a high prevalence of hepatitis C virus (HCV). We have previously shown alterations in the insulin-like growth factor-1 (IGF-1) receptor signalling pathway during experimental hepatocarcinogenesis. The aim of this study was to determine whether serum levels of IGF-1, IGF-2 and IGFBP-3 can be used to discriminate between HCC and the stages of hepatic dysfunction in patients with liver cirrhosis assessed by the Child-Pugh (CP) score, and to correlate these levels with HCC stages. We recruited 241 subjects to the present study; 79 with liver cirrhosis, 62 with HCV-induced HCC and 100 age-matched controls. Results showed that serum levels of IGF-1, IGF-2 and IGFBP-3 were reduced significantly in cirrhosis and HCC patients in comparison to the controls, and that this reduction negatively correlated with the CP scores. However, only IGFBP-3 levels showed significant negative correlation with α-fetoprotein levels. The reduction in IGF-1 and IGFBP-3 but not IGF-2 levels was significant in HCC in comparison to patients with cirrhosis. None of the parameters significantly correlated with the HCC stage. IGFBP-3 levels discriminated between cirrhosis and HCC at a sensitivity of 87%, a specificity of 80% and a cut-off value of <682.6 ng/ml. In conclusion, although our results showed that serum IGF-1, IGF-2 and IGFBP-3 are reduced with the progression of hepatic dysfunction, only IGFBP-3 may be considered as the most promising serological marker for the prediction of the development of HCC in the chronic HCV patients with liver cirrhosis.
Collapse
Affiliation(s)
- Eiman Aleem
- Molecular Biology Division, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|