1
|
Rao GN, Jupudi S, Justin A. A Review on Neuroinflammatory Pathway Mediating Through Ang-II/AT1 Receptors and a Novel Approach for the Treatment of Cerebral Ischemia in Combination with ARB's and Ceftriaxone. Ann Neurosci 2024; 31:53-62. [PMID: 38584983 PMCID: PMC10996871 DOI: 10.1177/09727531231182554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/16/2023] [Indexed: 04/09/2024] Open
Abstract
Background Ischemic stroke is one of the prevalent neurodegenerative disorders; it is generally characterized by sudden abruption of blood flow due to thromboembolism and vascular abnormalities, eventually impairing the supply of oxygen and nutrients to the brain for its metabolic needs. Oxygen-glucose deprived conditions provoke the release of excessive glutamate, which causes excitotoxicity. Summary Recent studies suggest that circulatory angiotensin-II (Ang-II) has an imperative role in initiating detrimental events through binding central angiotensin 1 (AT1) receptors. Insufficient energy metabolites and essential ions often lead to oxidative stress during ischemic reperfusion, which leads to the release of proinflammatory mediators such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and cytokines like interleukin-18 (IL-18) and interleukin- 1beta (IL-1β). The transmembrane glutamate transporters, excitatory amino acid transporter-2 (EAAT-2), which express in astroglial cells, have a crucial role in the clearance of glutamate from its releasing site and convert glutamate into glutamine in normal circumstances of brain physiology. Key Message During cerebral ischemia, an impairment or dysfunction of EAAT-2 attributes the risk of delayed neuronal cell death. Earlier studies evidencing that angiotensin receptor blockers (ARB) attenuate neuroinflammation by inhibiting the Ang-II/AT1 receptor-mediated inflammatory pathway and that ceftriaxone ameliorates the excitotoxicity-induced neuronal deterioration by enhancing the transcription and expression of EAAT-2 via the nuclear transcriptional factor kappa-B (NF-kB) signaling pathway. The present review will briefly discuss the mechanisms involved in Ang-II/AT1-mediated neuroinflammation, ceftriaxone-induced EAAT-2 expression, and the repurposing hypothesis of the novel combination of ARBs and ceftriaxone for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Gaddam Narasimha Rao
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
2
|
Samokhodskaya LM, Starostina EE, Sulimov AV, Krasnova ТN, Rosina TP, Avdeev VG, Savkin IA, Sulimov VB, Mukhin NA, Tkachuk VA, Sadovnichii VA. Prediction of features of the course of chronic hepatitis C using Bayesian networks. TERAPEVT ARKH 2019; 91:32-39. [PMID: 31094169 DOI: 10.26442/00403660.2019.02.000076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MATERIALS AND METHODS 253 patients with chronic hepatitis C (CHC) and liver cirrhosis were included in the study. Assessment of gene polymorphisms of genes involved in inflammatory reactions and antiviral immunity (IL-1β-511C/T, IL-10 -1082G/A, IL28B C/T, IL28B T/G, TNF-α -238G/A, TGF-β -915G/C, IL-6 -174G/C), activators of local hepatic fibrosis (AGT G-6A, AGT 235 M/T, ATR1 1166 A/C), hemochromatosis (HFE C282Y, HFE H63D), platelet receptors (ITGA2 807 C/T, ITGB3 1565 T/C), coagulation proteins and endothelial dysfunction (FII 20210 G/A, FV 1691G/A, FVII 10976 G/A, FXIII 103 G/T, eNOS 894 G/T, CYBA 242 C/T, FBG -455 G/A, PAI-675 5G/4G, MTHFR 677 C/T) was carried. Using Bayesian networks we studied the predictor value of clinical and laboratory factors for the following conditions - end points (EP): development of cirrhosis (EP1), fibrosis rate (EP2), presence of portal hypertension (EP3) and cryoglobulins (EP4). RESULTS AND DISCUSSION In addition to traditional factors we have shown the contribution of the following mutations. Predicting EP1- liver cirrhosis - HFE H63D, C282Y, CYBA 242 C/T, AGT G-6G, ITGB31565 T/C gene mutations were significant. We also found a link between the rate of progression of liver fibrosis and gene polymorphisms of AGT G-6G, AGT M235T, FV 1691G/A, ITGB31565 T/C. Among the genetic factors associated with portal hypertension there are gene polymorphisms of PAI-I-675 5G/4G, FII 20210 G/A, CYBA 242 C/T, HFE H63D and Il-6 174GC. Cryoglobulins and cryoglobuliemic vasculitis (EP4) are associated with gene mutations MTHFR C677T, ATR A1166C and HFE H63D. CONCLUSION The results obtained allow to detect the major pathophysiological and genetic factors which determine the status of the patient and the outcome of the disease, to clarify their contribution, and to reveal the significance of point mutations of genes that control the main routes of HCV course and progression.
Collapse
Affiliation(s)
| | | | - A V Sulimov
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Т N Krasnova
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - T P Rosina
- M.V. Lomonosov Moscow State University, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V G Avdeev
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - I A Savkin
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - V B Sulimov
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - N A Mukhin
- M.V. Lomonosov Moscow State University, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V A Tkachuk
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
4
|
Kolodny E, Fellgiebel A, Hilz MJ, Sims K, Caruso P, Phan TG, Politei J, Manara R, Burlina A. Cerebrovascular Involvement in Fabry Disease. Stroke 2015; 46:302-13. [PMID: 25492902 DOI: 10.1161/strokeaha.114.006283] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Edwin Kolodny
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Andreas Fellgiebel
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Max J. Hilz
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Katherine Sims
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Paul Caruso
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Thanh G. Phan
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Juan Politei
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Renzo Manara
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Alessandro Burlina
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| |
Collapse
|