1
|
Yu H, Wang X, Bai L, Tang G, Carter KT, Cui J, Huang P, Liang L, Ding Y, Cai M, Huang M, Liu H, Cao G, Gallinger S, Pai RK, Buchanan DD, Win AK, Newcomb PA, Wang J, Grady WM, Luo Y. DNA methylation profile in CpG-depleted regions uncovers a high-risk subtype of early-stage colorectal cancer. J Natl Cancer Inst 2023; 115:52-61. [PMID: 36171645 PMCID: PMC10089593 DOI: 10.1093/jnci/djac183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The current risk stratification system defined by clinicopathological features does not identify the risk of recurrence in early-stage (stage I-II) colorectal cancer (CRC) with sufficient accuracy. We aimed to investigate whether DNA methylation could serve as a novel biomarker for predicting prognosis in early-stage CRC patients. METHODS We analyzed the genome-wide methylation status of CpG loci using Infinium MethylationEPIC array run on primary tumor tissues and normal mucosa of early-stage CRC patients to identify potential methylation markers for prognosis. The machine-learning approach was applied to construct a DNA methylation-based prognostic classifier for early-stage CRC (MePEC) using the 4 gene methylation markers FAT3, KAZN, TLE4, and DUSP3. The prognostic value of the classifier was evaluated in 2 independent cohorts (n = 438 and 359, respectively). RESULTS The comprehensive analysis identified an epigenetic subtype with high risk of recurrence based on a group of CpG loci in the CpG-depleted region. In multivariable analysis, the MePEC classifier was independently and statistically significantly associated with time to recurrence in validation cohort 1 (hazard ratio = 2.35, 95% confidence interval = 1.47 to 3.76, P < .001) and cohort 2 (hazard ratio = 3.20, 95% confidence interval = 1.92 to 5.33, P < .001). All results were further confirmed after each cohort was stratified by clinicopathological variables and molecular subtypes. CONCLUSIONS We demonstrated the prognostic statistical significance of a DNA methylation profile in the CpG-depleted region, which may serve as a valuable source for tumor biomarkers. MePEC could identify an epigenetic subtype with high risk of recurrence and improve the prognostic accuracy of current clinical variables in early-stage CRC.
Collapse
Affiliation(s)
- Huichuan Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Liangliang Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Guannan Tang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Kelly T Carter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ji Cui
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pinzhu Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Steven Gallinger
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON, Canada
| | - Rish K Pai
- Department of laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Familial Cancer Centre, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Polly A Newcomb
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Ashraf W, Ibrahim A, Alhosin M, Zaayter L, Ouararhni K, Papin C, Ahmad T, Hamiche A, Mély Y, Bronner C, Mousli M. The epigenetic integrator UHRF1: on the road to become a universal biomarker for cancer. Oncotarget 2017; 8:51946-51962. [PMID: 28881702 PMCID: PMC5584303 DOI: 10.18632/oncotarget.17393] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world causing record number of mortalities in both developed and undeveloped countries. Despite a lot of advances and breakthroughs in the field of oncology still, it is very hard to diagnose and treat the cancers at early stages. Here in this review we analyze the potential of Ubiquitin-like containing PHD and Ring Finger domain 1 (UHRF1) as a universal biomarker for cancers. UHRF1 is an important epigenetic regulator maintaining DNA methylation and histone code in the cell. It is highly expressed in a variety of cancers and is a well-known oncogene that can disrupt the epigenetic code and override the senescence machinery. Many studies have validated UHRF1 as a powerful diagnostic and prognostic tool to differentially diagnose cancer, predict the therapeutic response and assess the risk of tumor progression and recurrence. Highly sensitive, non-invasive and cost effective approaches are therefore needed to assess the level of UHRF1 in patients, which can be deployed in diagnostic laboratories to detect cancer and monitor disease progression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Abdulkhaleg Ibrahim
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer Metabolism and Epigenetic Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Liliyana Zaayter
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Christophe Papin
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tanveer Ahmad
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Yves Mély
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Marc Mousli
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| |
Collapse
|
3
|
Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:33-45. [PMID: 29276780 DOI: 10.1080/23808993.2017.1284557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Epigenetics is the study of reversible modifications to chromatin and their extensive and profound effects on gene regulation. To date, the role of epigenetics in personalized medicine has been under-explored. Therefore, this review aims to highlight the vast potential that epigenetics holds. Areas covered We first review the cell-specific nature of epigenetic states and how these can vary with developmental stage and in response to environmental factors. We then summarize epigenetic biomarkers of disease, with a focus on diagnostic tests, followed by a detailed description of current and pipeline drugs with epigenetic modes of action. Finally, we discuss epigenetic biomarkers of drug response. Expert commentary Epigenetic variation can yield information on cellular states and developmental histories in ways that genotype information cannot. Furthermore, in contrast to fixed genome sequence, epigenetic patterns are plastic, so correcting aberrant, disease-causing epigenetic marks holds considerable therapeutic promise. While just six epigenetic drugs are currently approved for use in the United States, a larger number is being developed. However, a drawback to current therapeutics is their non-specific effects. Development of locus-specific epigenetic modifiers, used in conjunction with epigenetic biomarkers of response, will enable truly precision interventions.
Collapse
Affiliation(s)
- Mohamad M Kronfol
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| |
Collapse
|