1
|
Lai J, Wang B, Petrik M, Beziere N, Hammoud DA. Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future. J Infect Dis 2023; 228:S259-S269. [PMID: 37788500 PMCID: PMC10547453 DOI: 10.1093/infdis/jiad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Invasive fungal infections have become a major challenge for public health, mainly due to the growing numbers of immunocompromised patients, with high morbidity and mortality. Currently, conventional imaging modalities such as computed tomography and magnetic resonance imaging contribute largely to the noninvasive diagnosis and treatment evaluation of those infections. These techniques, however, often fall short when a fast, noninvasive and specific diagnosis of fungal infection is necessary. Molecular imaging, especially using nuclear medicine-based techniques, aims to develop fungal-specific radiotracers that can be tested in preclinical models and eventually translated to human applications. In the last few decades, multiple radioligands have been developed and tested as potential fungal-specific tracers. These include radiolabeled peptides, antifungal drugs, siderophores, fungal-specific antibodies, and sugars. In this review, we provide an overview of the pros and cons of the available radiotracers. We also address the future prospects of fungal-specific imaging.
Collapse
Affiliation(s)
- Jianhao Lai
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Tian S, Huang H, Zhang Y, Shi H, Dong Y, Zhang W, Bai C. The role of confocal laser endomicroscopy in pulmonary medicine. Eur Respir Rev 2023; 32:32/167/220185. [PMID: 36697210 PMCID: PMC9879334 DOI: 10.1183/16000617.0185-2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Accurate diagnosis and subsequent therapeutic options in pulmonary diseases mainly rely on imaging methods and histological assessment. However, imaging examinations are hampered by the limited spatial resolution of images and most procedures that are related to histological assessment are invasive with associated complications. As a result, a high-resolution imaging technology - confocal laser endomicroscopy (CLE), which is at the forefront and enables real-time microscopic visualisation of the morphologies and architectures of tissues or cells - has been developed to resolve the clinical dilemma pertaining to current techniques. The current evidence has shown that CLE has the potential to facilitate advanced diagnostic capabilities, to monitor and to aid the tailored treatment regime for patients with pulmonary diseases, as well as to expand the horizon for unravelling the mechanism and therapeutic targets of pulmonary diseases. In the future, if CLE can be combined with artificial intelligence, early, rapid and accurate diagnosis will be achieved through identifying the images automatically. As promising as this technique may be, further investigations are required before it can enter routine clinical practice.
Collapse
Affiliation(s)
- Sen Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,These authors contributed equally to this work
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,These authors contributed equally to this work
| | - Yifei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai, China,These authors contributed equally to this work
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai, China,Corresponding author: Chong Bai ()
| |
Collapse
|
3
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Dellière S, Dannaoui E, Fieux M, Bonfils P, Gricourt G, Demontant V, Podglajen I, Woerther PL, Angebault C, Botterel F. Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza? J Fungi (Basel) 2021; 7:550. [PMID: 34356929 PMCID: PMC8305266 DOI: 10.3390/jof7070550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Fungal ball (FB) rhinosinusitis (RS) is the main type of non-invasive fungal RS. Despite positive direct examination (DE) of biopsies, culture remains negative in more than 60% of cases. The aim of the study was to evaluate the performance/efficacy of targeted metagenomics (TM) to analyze microbiota and mycobiota in FB and find microbial associations. Forty-five sinus biopsies from patients who underwent surgery for chronic RS were included. After DE and culture, DNA was extracted, then fungal ITS1-ITS2 and bacterial V3-V4 16S rDNA loci were sequenced (MiSeqTM Illumina). Operational taxonomic units (OTUs) were defined via QIIME and assigned to SILVA (16S) and UNITE (ITS) databases. Statistical analyses were performed using SHAMAN. Thirty-eight patients had FB and seven had non-fungal rhinosinusitis (NFRS). DE and culture of FB were positive for fungi in 97.3 and 31.6% of patients, respectively. TM analysis of the 38 FB yielded more than one fungal genus in 100% of cases, with Aspergillus in 89.5% (34/38). Haemophilus was over-represented in FB with >1000 reads/sample in 47.3% (18/38) compared to NFRS (p < 0.001). TM allowed fungal identification in biopsies with negative culture. Haemophilus was associated with FB. Pathogenesis could result from fungi-bacteria interactions in a mixed biofilm-like structure.
Collapse
Affiliation(s)
- Sarah Dellière
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- Unité de Parasitologie-Mycologie, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris, Université de Paris, 75010 Paris, France
| | - Eric Dannaoui
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
- Unité de Parasitologie-Mycologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France
| | - Maxime Fieux
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
- Service d’Otorhinolaryngologie, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Pierre Bonfils
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
| | - Guillaume Gricourt
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Vanessa Demontant
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Isabelle Podglajen
- Unité de Bactériologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France;
| | - Paul-Louis Woerther
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- Unité de Bactériologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France
| | - Cécile Angebault
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| |
Collapse
|
5
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Gunzer M, Thornton CR, Beziere N. Advances in the In Vivo Molecular Imaging of Invasive Aspergillosis. J Fungi (Basel) 2020; 6:jof6040338. [PMID: 33291706 PMCID: PMC7761943 DOI: 10.3390/jof6040338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening infection of immunocompromised patients with Aspergillus fumigatus, a ubiquitous environmental mould. While there are numerous functioning antifungal therapies, their high cost, substantial side effects and fear of overt resistance development preclude permanent prophylactic medication of risk-patients. Hence, a fast and definitive diagnosis of IPA is desirable, to quickly identify those patients that really require aggressive antimycotic treatment and to follow the course of the therapeutic intervention. However, despite decades of research into this issue, such a diagnostic procedure is still not available. Here, we discuss the array of currently available methods for IPA detection and their limits. We then show that molecular imaging using positron emission tomography (PET) combined with morphological computed tomography or magnetic imaging is highly promising to become a future non-invasive approach for IPA diagnosis and therapy monitoring, albeit still requiring thorough validation and relying on further acceptance and dissemination of the approach. Thereby, our approach using the A. fumigatus-specific humanized monoclonal antibody hJF5 labelled with 64Cu as PET-tracer has proven highly effective in pre-clinical models and hence bears high potential for human application.
Collapse
Affiliation(s)
- Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Correspondence: (M.G.); (N.B.); Tel.: +49-201-183-6640 (M.G.); +49-7071-29-87511 (N.B.)
| | - Christopher R. Thornton
- ISCA Diagnostics Ltd. and Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence: (M.G.); (N.B.); Tel.: +49-201-183-6640 (M.G.); +49-7071-29-87511 (N.B.)
| |
Collapse
|
7
|
Goorsenberg A, Kalverda KA, Annema J, Bonta P. Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases. Respiration 2019; 99:190-205. [PMID: 31593955 DOI: 10.1159/000503261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Diagnosing and monitoring pulmonary diseases is highly dependent on imaging, physiological function tests and tissue sampling. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are novel imaging techniques with near-microscopic resolution that can be easily and safely combined with conventional bronchoscopy. Disease-related pulmonary anatomical compartments can be visualized, real time, using these techniques. In obstructive lung diseases, airway wall layers and related structural remodelling can be identified and quantified. In malignant lung disease, normal and malignant areas of the central airways, lung parenchyma, lymph nodes and pleura can be discriminated. A growing number of interstitial lung diseases (ILDs) have been visualized using OCT or CLE. Several ILD-associated structural changes can be imaged: fibrosis, cellular infiltration, bronchi(ol)ectasis, cysts and microscopic honeycombing. Although not yet implemented in clinical practice, OCT and CLE have the potential to improve detection and monitoring pulmonary diseases and can contribute in unravelling the pathophysiology of disease and mechanism of action of novel treatments. Indeed, assessment of the airway wall layers with OCT might be helpful when evaluating treatments targeting airway remodelling. By visualizing individual malignant cells, CLE has the potential as a real-time lung cancer detection tool. In the future, both techniques could be combined with laser-enhanced fluorescent-labelled tracer detection. This review discusses the value of OCT and CLE in pulmonary medicine by summarizing the current evidence and elaborating on future perspectives.
Collapse
Affiliation(s)
- Annika Goorsenberg
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands,
| | - Kirsten A Kalverda
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke Annema
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Bonta
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Patout M, Guisier F, Brune X, Bohn P, Romieu A, Sarafan-Vasseur N, Sesboüé R, Renard PY, Thiberville L, Salaün M. Real-time molecular optical micro-imaging of EGFR mutations using a fluorescent erlotinib based tracer. BMC Pulm Med 2019; 19:3. [PMID: 30612556 PMCID: PMC6322267 DOI: 10.1186/s12890-018-0760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/06/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND EGFR mutations are routinely explored in lung adenocarcinoma by sequencing tumoral DNA. The aim of this study was to evaluate a fluorescent-labelled erlotinib based theranostic agent for the molecular imaging of mutated EGFR tumours in vitro and ex vivo using a mice xenograft model and fibred confocal fluorescence microscopy (FCFM). METHODS The fluorescent tracer was synthesized in our laboratory by addition of fluorescein to an erlotinib molecule. Three human adenocarcinoma cell lines with mutated EGFR (HCC827, H1975 and H1650) and one with wild-type EGFR (A549) were xenografted on 35 Nude mice. MTT viability assay was performed after exposure to our tracer. In vitro imaging was performed at 1 μM tracer solution, and ex vivo imaging was performed on fresh tumours excised from mice and exposed to a 1 μM tracer solution in PBS for 1 h. Real-time molecular imaging was performed using FCFM and median fluorescence intensity (MFI) was recorded for each experiment. RESULTS MTT viability assay confirmed that addition of fluorescein to erlotinib did not suppress the cytotoxic of erlotinib on tumoral cells. In vitro FCFM imaging showed that our tracer was able to distinguish cell lines with mutated EGFR from those lines with wild-type EGFR (p < 0.001). Ex vivo FCFM imaging of xenografts with mutated EGFR had a significantly higher MFI than wild-type (p < 0.001). At a cut-off value of 354 Arbitrary Units, MFI of our tracer had a sensitivity of 100% and a specificity of 96.3% for identifying mutated EGFR tumours. CONCLUSION Real time molecular imaging using fluorescent erlotinib is able to identify ex vivo tumours with EGFR mutations.
Collapse
Affiliation(s)
- Maxime Patout
- Rouen University Hospital, Clinique Pneumologique & CIC INSERM U 1404, F-76000, Rouen, France. .,Normandie University, UNIROUEN, LITIS, Quant.I.F - EA 4108, F-76000, Rouen, France. .,Service de Pneumologie, Oncologie Thoracique, Soins Intensifs Respiratoires, CHU de Rouen, 1 rue de Germont, 76031, Rouen Cedex, France.
| | - Florian Guisier
- Rouen University Hospital, Clinique Pneumologique & CIC INSERM U 1404, F-76000, Rouen, France.,Normandie University, UNIROUEN, LITIS, Quant.I.F - EA 4108, F-76000, Rouen, France
| | - Xavier Brune
- Normandie University, COBRA, UMR 6014 & FR 3038; CNRS, F-76000, Rouen, France
| | - Pierre Bohn
- Rouen University Hospital, Clinique Pneumologique & CIC INSERM U 1404, F-76000, Rouen, France
| | - Anthony Romieu
- Normandie University, COBRA, UMR 6014 & FR 3038; CNRS, F-76000, Rouen, France.,Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, University, Bourgogne Franche-Comté, 21078, Dijon, France
| | - Nasrin Sarafan-Vasseur
- Génétique du cancer et des maladies neuropsychiatriques, Normandie University, UNIROUEN, INSERM, F-76000, Rouen, France
| | - Richard Sesboüé
- Génétique du cancer et des maladies neuropsychiatriques, Normandie University, UNIROUEN, INSERM, F-76000, Rouen, France
| | - Pierre-Yves Renard
- Normandie University, COBRA, UMR 6014 & FR 3038; CNRS, F-76000, Rouen, France
| | - Luc Thiberville
- Rouen University Hospital, Clinique Pneumologique & CIC INSERM U 1404, F-76000, Rouen, France.,Normandie University, UNIROUEN, LITIS, Quant.I.F - EA 4108, F-76000, Rouen, France
| | - Mathieu Salaün
- Rouen University Hospital, Clinique Pneumologique & CIC INSERM U 1404, F-76000, Rouen, France.,Normandie University, UNIROUEN, LITIS, Quant.I.F - EA 4108, F-76000, Rouen, France
| |
Collapse
|
9
|
Zhao C, Mendive-Tapia L, Vendrell M. Fluorescent peptides for imaging of fungal cells. Arch Biochem Biophys 2018; 661:187-195. [PMID: 30465736 DOI: 10.1016/j.abb.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
Abstract
Fungal infections, especially with the advent of antimicrobial resistance, represent a major burden to our society. As a result, there has been an increasing interest in the development of new probes that accelerate the study of fungi-related biological processes and facilitate novel clinical diagnostic and treatment strategies. Fluorescence-based reporters can provide dynamic information at the molecular level with high spatial resolution. However, conventional fluorescent probes for microbes often suffer from low specificity. In the last decade, numerous studies have been reported on the chemical design and application of fluorescent peptides for both in vitro and in vivo imaging of fungal cells. In this article, we review different strategies used in the preparation of fluorescent peptides for pathogenic fungi as well as some of their applications in medical imaging and in mode-of-action mechanistic studies.
Collapse
Affiliation(s)
- Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, M13 9NT, United Kingdom
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom.
| |
Collapse
|
10
|
In vivo imaging of bacterial colonization of the lower respiratory tract in a baboon model of Bordetella pertussis infection and transmission. Sci Rep 2018; 8:12297. [PMID: 30115990 PMCID: PMC6095854 DOI: 10.1038/s41598-018-30896-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 01/10/2023] Open
Abstract
Recent whooping cough (pertussis) outbreaks in many countries highlight the crucial need for a better understanding of the pathogenesis of Bordetella pertussis infection of the respiratory tract. The baboon is a recently described preclinical model for the study of B. pertussis infection and may be ideal for the evaluation of new pertussis vaccines. However, many pathophysiological aspects, including bacterial localization and interactions, have yet to be described in this model. Here, we used a baboon model of infection with a fluorescent GFP-expressing B. pertussis strain, derived from European clinical isolate B1917. Juvenile baboons were used to evaluate susceptibility to infection and transmission. Non-invasive in vivo imaging procedures, using probe-based confocal endomicroscopy coupled with bronchoscopy, were developed to track fluorescent bacterial localization and cellular interactions with host cells in the lower respiratory tract of infected animals. All B1917-GFP-challenged animals developed classical pertussis symptoms, including paroxysmal cough, nasopharyngeal colonization, and leukocytosis. In vivo co-localization with antigen presenting cells and progressive bacterial colonization of the lower airways were also assessed by imaging during the first weeks of infection. Our results demonstrate that in vivo imaging can be used to assess bacterial colonization and to point out interactions in a baboon model of pertussis.
Collapse
|
11
|
Vanherp L, Poelmans J, Hillen A, Govaerts K, Belderbos S, Buelens T, Lagrou K, Himmelreich U, Vande Velde G. Bronchoscopic fibered confocal fluorescence microscopy for longitudinal in vivo assessment of pulmonary fungal infections in free-breathing mice. Sci Rep 2018; 8:3009. [PMID: 29445211 PMCID: PMC5813038 DOI: 10.1038/s41598-018-20545-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/21/2018] [Indexed: 11/12/2022] Open
Abstract
Respiratory diseases, such as pulmonary infections, are an important cause of morbidity and mortality worldwide. Preclinical studies often require invasive techniques to evaluate the extent of infection. Fibered confocal fluorescence microscopy (FCFM) is an emerging optical imaging technique that allows for real-time detection of fluorescently labeled cells within live animals, thereby bridging the gap between in vivo whole-body imaging methods and traditional histological examinations. Previously, the use of FCFM in preclinical lung research was limited to endpoint observations due to the invasive procedures required to access lungs. Here, we introduce a bronchoscopic FCFM approach that enabled in vivo visualization and morphological characterisation of fungal cells within lungs of mice suffering from pulmonary Aspergillus or Cryptococcus infections. The minimally invasive character of this approach allowed longitudinal monitoring of infection in free-breathing animals, thereby providing both visual and quantitative information on infection progression. Both the sensitivity and specificity of this technique were high during advanced stages of infection, allowing clear distinction between infected and non-infected animals. In conclusion, our study demonstrates the potential of this novel bronchoscopic FCFM approach to study pulmonary diseases, which can lead to novel insights in disease pathogenesis by allowing longitudinal in vivo microscopic examinations of the lungs.
Collapse
Affiliation(s)
- Liesbeth Vanherp
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Amy Hillen
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Sarah Belderbos
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Tinne Buelens
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49 box 6711, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Abstract
Microbial biofilms can colonize medical devices and human tissues, and their role in microbial pathogenesis is now well established. Not only are biofilms ubiquitous in natural and human-made environments, but they are also estimated to be associated with approximately two-thirds of nosocomial infections. This multicellular aggregated form of microbial growth confers a remarkable resistance to killing by antimicrobials and host defenses, leading biofilms to cause a wide range of subacute or chronic infections that are difficult to eradicate. We have gained tremendous knowledge on the molecular, genetic, microbiological, and biophysical processes involved in biofilm formation. These insights now shape our understanding, diagnosis, and management of many infectious diseases and direct the development of novel antimicrobial therapies that target biofilms. Bacterial and fungal biofilms play an important role in a range of diseases in pulmonary and critical care medicine, most importantly catheter-associated infections, ventilator-associated pneumonia, chronic Pseudomonas aeruginosa infections in cystic fibrosis lung disease, and Aspergillus fumigatus pulmonary infections.
Collapse
|
13
|
Guisier F, Bohn P, Patout M, Piton N, Farah I, Vera P, Thiberville L, Salaün M. In- and ex-vivo molecular imaging of apoptosis to assess sensitivity of non-small cell lung cancer to EGFR inhibitors using probe-based confocal laser endomicroscopy. PLoS One 2017; 12:e0180576. [PMID: 28671975 PMCID: PMC5495425 DOI: 10.1371/journal.pone.0180576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prediction of treatment outcome of non-small cell lung cancer (NSCLC) with EGFR inhibitors on the basis of the genetic analysis of the tumor can be incorrect in case of rare or complex mutations, bypass molecular activation pathways, or pharmacodynamic variations. The aim of this study was to develop an ex vivo and in vivo real-time quantitative imaging test for EGFR inhibitors sensitivity assessment. METHODS Erlotinib resistant (A549, H460, H1975), insensitive (H1650) and hypersensitive (HCC827) cell lines were injected subcutaneously in Nude mice. Tumor xenografts from mice treated with Erlotinib were imaged ex vivo and in vivo using probe-based confocal laser endomicroscopy (pCLE) and NucView 488 Caspase 3 substrate, a fluorescent probe specific for the activated caspase 3. RESULTS Assessment of apoptosis at 24h post treatment, both ex vivo in explanted tumor xenografts and in vivo, showed a significant difference between resistant cell lines (A549, H460 and H1975) and insensitive (H1650) or hypersensitive (HCC827) ones (p<0.05 for ex vivo imaging, p≤0.02 for in vivo imaging). There was also a significant difference between insensitive and hypersensitive cell lines, both ex vivo (p<0.05) and in vivo (p = 0.01). CONCLUSION Real-time in vivo and ex vivo assessment of apoptosis using pCLE differentiates resistant from sensitive NSCLC xenografts to Erlotinib.
Collapse
Affiliation(s)
- Florian Guisier
- Department of Pulmonology, Thoracic Oncology and Respiratory Intensive Care & CIC INSERM U 1404, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
| | - Pierre Bohn
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
- Nuclear Medicine Department, Henri Becquerel Cancer Center and Rouen University Hospital, Rouen, France
| | - Maxime Patout
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
| | - Nicolas Piton
- Cytology & Pathology Department, Rouen University Hospital, Rouen, France
| | - Insaf Farah
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
| | - Pierre Vera
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
- Nuclear Medicine Department, Henri Becquerel Cancer Center and Rouen University Hospital, Rouen, France
| | - Luc Thiberville
- Department of Pulmonology, Thoracic Oncology and Respiratory Intensive Care & CIC INSERM U 1404, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
| | - Mathieu Salaün
- Department of Pulmonology, Thoracic Oncology and Respiratory Intensive Care & CIC INSERM U 1404, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, LITIS, Quant.I.F – EA 4108, Rouen, France
| |
Collapse
|
14
|
Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3127908. [PMID: 29097915 PMCID: PMC5612736 DOI: 10.1155/2017/3127908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Purpose We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Procedures Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). Results The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. Conclusions This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.
Collapse
|
15
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
16
|
Leng Q, Woodle MC, Liu Y, Mixson AJ. Silver adducts of four-branched histidine rich peptides exhibit synergistic antifungal activity. Biochem Biophys Res Commun 2016; 477:957-962. [PMID: 27387239 DOI: 10.1016/j.bbrc.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/02/2016] [Indexed: 02/03/2023]
Abstract
Previously, a four branched histidine-lysine rich peptide, H3K4b, was shown to demonstrate selective antifungal activity with minimal antibacterial activity. Due to the potential breakdown from proteases, H3K4b was further evaluated in the current study by varying the D- and l-amino acid content in its branches. Whereas analogues of H3K4b that selectively replaced l-amino acids (H3k4b, h3K4b) had improved antifungal activity, the all d-amino acid analogue, h3k4b, had reduced activity, suggesting that partial breakdown of the peptide may be necessary. Moreover, because histidines form coordination bonds with the silver ion, we examined whether silver adducts can be formed with these branched histidine-lysine peptides, which may improve antifungal activity. For Candida albicans, the silver adduct of h3K4b or H3k4b reduced the MIC compared to peptide and silver ions alone by 4- and 5-fold, respectively. For Aspergillus fumigatus, the silver adducts showed even greater enhancement of activity. Although the silver adducts of H3k4b or h3K4b showed synergistic activity, the silver adduct with the all l-amino acid H3K4b surprisingly showed the greatest synergistic and growth inhibition of A. fumigatus: the silver adduct of H3K4b reduced the MIC compared to the peptide and silver ions alone by 30- and 26-fold, respectively. Consistent with these antifungal efficacy results, marked increases in free oxygen radicals were produced with the H3K4b and silver combination. These studies suggest that there is a balance between stability and breakdown for optimal antifungal activity of the peptide alone and for the peptide-silver adduct.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Yijia Liu
- Aparna Biosciences Corp, Rockville, MD 20852, USA
| | - A James Mixson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue. Nat Commun 2016; 7:10940. [PMID: 26956772 PMCID: PMC4786873 DOI: 10.1038/ncomms10940] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
Fluorescent antimicrobial peptides are promising structures for in situ, real-time imaging of fungal infection. Here we report a fluorogenic probe to image Aspergillus fumigatus directly in human pulmonary tissue. We have developed a fluorogenic Trp-BODIPY amino acid with a spacer-free C-C linkage between Trp and a BODIPY fluorogen, which shows remarkable fluorescence enhancement in hydrophobic microenvironments. The incorporation of our fluorogenic amino acid in short antimicrobial peptides does not impair their selectivity for fungal cells, and enables rapid and direct fungal imaging without any washing steps. We have optimized the stability of our probes in human samples to perform multi-photon imaging of A. fumigatus in ex vivo human tissue. The incorporation of our unique BODIPY fluorogen in biologically relevant peptides will accelerate the development of novel imaging probes with high sensitivity and specificity.
Collapse
|
18
|
Salaün M, Peng J, Hensley HH, Roder N, Flieder DB, Houlle-Crépin S, Abramovici-Roels O, Sabourin JC, Thiberville L, Clapper ML. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma. PLoS One 2015; 10:e0132960. [PMID: 26193700 PMCID: PMC4508003 DOI: 10.1371/journal.pone.0132960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/20/2015] [Indexed: 01/15/2023] Open
Abstract
Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer.
Collapse
Affiliation(s)
- Mathieu Salaün
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America; Laboratoire Quant.I.F - LITIS, EA 4108, Rouen University, Rouen, France; Clinique Pneumologique & CIC INSERM U1404, Rouen University Hospital, Rouen, France
| | - Jing Peng
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Harvey H Hensley
- Biological Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Navid Roder
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Douglas B Flieder
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | | | | | | | - Luc Thiberville
- Laboratoire Quant.I.F - LITIS, EA 4108, Rouen University, Rouen, France; Clinique Pneumologique & CIC INSERM U1404, Rouen University Hospital, Rouen, France
| | - Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Forest F, Cinotti E, Habougit C, Ginguéné C, Perrot JL, Labeille B, Flori P, Botelho-Nevers E, Péoćh M. Rapid characterization of human brain aspergillosis by confocal microscopy on a thick squash preparation. Cytopathology 2015; 27:221-2. [PMID: 26126596 DOI: 10.1111/cyt.12258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F Forest
- Department of Pathology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - E Cinotti
- Department of Dermatology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - C Habougit
- Department of Pathology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - C Ginguéné
- Department of Neurosurgery, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - J-L Perrot
- Department of Dermatology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - B Labeille
- Department of Dermatology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - P Flori
- Department of Mycology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - E Botelho-Nevers
- Department of Infectious Diseases, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| | - M Péoćh
- Department of Pathology, University Hospital of Saint Etienne, North Hospital, Saint Etienne CEDEX 2, France
| |
Collapse
|
20
|
Ambasta A, Carson J, Church DL. The use of biomarkers and molecular methods for the earlier diagnosis of invasive aspergillosis in immunocompromised patients. Med Mycol 2015; 53:531-57. [DOI: 10.1093/mmy/myv026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
|
21
|
Salaün M, Modzelewski R, Marie JP, Moreno-Swirc S, Bourg-Heckly G, Thiberville L. In vivo assessment of the pulmonary microcirculation in elastase-induced emphysema using probe-based confocal fluorescence microscopy. INTRAVITAL 2014. [DOI: 10.4161/intv.23471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|