1
|
Aljuhani S, Rizwana H, Aloufi AS, Alkahtani S, Albasher G, Almasoud H, Elsayim R. Antifungal activity of Carica papaya fruit extract against Microsporum canis: in vitro and in vivo study. Front Microbiol 2024; 15:1399671. [PMID: 38803379 PMCID: PMC11128596 DOI: 10.3389/fmicb.2024.1399671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tinea capitis (T. capitis), commonly known as scalp ringworm, is a fungal infection affecting the scalp and hair. Among the causative agents, Microsporum canis (M. canis) stands out, often transmitted from cats to humans (zoonotic disease). In this study, we investigated the efficacy of Carica papaya (C. papaya), fruit extract against dermatophytes, particularly M. canis, both in vitro and in vivo. Additionally, we aimed to identify the active compounds responsible for suppressing fungal growth and assess the toxicity of C. papaya on human cells. Methodology It conducted in two parts. First, In Vitro Study include the preparation of C. papaya fruit extract using methanol as the solvent, Phytochemical analysis of the plant extract including Gas chromatography-mass spectrometry (GC-MS) and Fourier-transform infrared spectroscopy (FTIR) was conducted, Cytotoxicity assays were performed using HUH-7 cells, employing the MTT assay (1-(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), Antimicrobial activity against M. canis was evaluated, including: Zone of inhibition (ZI), Minimum inhibitory concentration (MIC), Minimum fungicidal concentration (MFC), M. canis cell alterations were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Second, In Vivo, Albino Wistar male rats were included. Results The phytochemical analysis of the methanolic extract from papaya revealed several functional groups, including hydroxyl, ammonia, alkane, carbonate, and alcohol. Additionally, the GC-MS analysis identified 15 compounds, with xanthosine and decanoic acid being the predominant components. The methanolic extract of papaya fruits demonstrated potent antifungal activity: ZI = 37 mm, MIC = 1,000 μg/mL, MFC = 1900 μg/mL, MTT results indicated lower cytotoxicity of the fruit extract at concentrations of 20 μg/mL, 50 μg/mL, 100 μg/mL, 150 μg/mL, and 200 μg/mL, The IC50 revealed a significant decrease in cell viability with increasing extract concentration. Notably, papaya extract induced considerable alterations in the morphology of M. canis hyphae and spores. In animal tissue, improvements were observed among the group of rats which treated with Papaya extract. This study highlights the potential of C. papaya fruits as a natural antifungal agent, warranting further exploration for clinical applications.
Collapse
Affiliation(s)
- Salma Aljuhani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hadeel Almasoud
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha Elsayim
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Hill RC, Caplan AS, Elewski B, Gold JAW, Lockhart SR, Smith DJ, Lipner SR. Expert Panel Review of Skin and Hair Dermatophytoses in an Era of Antifungal Resistance. Am J Clin Dermatol 2024; 25:359-389. [PMID: 38494575 PMCID: PMC11201321 DOI: 10.1007/s40257-024-00848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Dermatophytoses are fungal infections of the skin, hair, and nails that affect approximately 25% of the global population. Occlusive clothing, living in a hot humid environment, poor hygiene, proximity to animals, and crowded living conditions are important risk factors. Dermatophyte infections are named for the anatomic area they infect, and include tinea corporis, cruris, capitis, barbae, faciei, pedis, and manuum. Tinea incognito describes steroid-modified tinea. In some patients, especially those who are immunosuppressed or who have a history of corticosteroid use, dermatophyte infections may spread to involve extensive skin areas, and, in rare cases, may extend to the dermis and hair follicle. Over the past decade, dermatophytoses cases not responding to standard of care therapy have been increasingly reported. These cases are especially prevalent in the Indian subcontinent, and Trichophyton indotineae has been identified as the causative species, generating concern regarding resistance to available antifungal therapies. Antifungal-resistant dermatophyte infections have been recently recognized in the United States. Antifungal resistance is now a global health concern. When feasible, mycological confirmation before starting treatment is considered best practice. To curb antifungal-resistant infections, it is necessary for physicians to maintain a high index of suspicion for resistant dermatophyte infections coupled with antifungal stewardship efforts. Furthermore, by forging partnerships with federal agencies, state and local public health agencies, professional societies, and academic institutions, dermatologists can lead efforts to prevent the spread of antifungal-resistant dermatophytes.
Collapse
Affiliation(s)
| | - Avrom S Caplan
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Boni Elewski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy A W Gold
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, GA, USA
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, GA, USA
| | - Dallas J Smith
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, GA, USA
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA.
| |
Collapse
|
3
|
Mehlhorn C, Uhrlaß S, Klonowski E, Krüger C, Paasch U, Simon JC, Nenoff P. [Conventional and molecular diagnostics in onychomycosis-part 2 : Molecular identification of causative dermatophytes by polymerase chain reaction and sequence analysis of the internal transcribed spacer region of ribosomal DNA]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:238-252. [PMID: 38095686 DOI: 10.1007/s00105-023-05265-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 02/24/2024]
Abstract
Dermatophyte identification using traditional methods such as optics-based direct fluorescence microscopy and culture is nowadays supplemented by molecular biological methods. The validity of dermatophyte DNA detection with direct uniplex-polymerase chain reaction-enzyme immunoassay (PCR-EIA) in nail samples was proven by sequence analysis of the ribosomal internal transcribed spacer (ITS) region. A total of 108 dermatophytes, isolated from patients with onychomycosis, were positive for Trichophyton rubrum (TR) and Trichophyton interdigitale (TI) in culture and/or uniplex-PCR-EIA. Conventional methods for dermatophyte identification were complemented by direct uniplex-PCR-EIA and sequence analysis of the ribosomal ITS region (18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA). Of 108 patients (average age 62, median age 73), 56 showed cultural growth with 31 of them being identified as TR and 23 as TI. There was high agreement with the sequence analysis. Surprisingly, the pathogen of a single nail sample was identified as T. quinckeanum (formerly T. mentagrophytes sensu stricto), a rare zoophilic dermatophyte in Germany. A single TI strain turned out to be a misidentified T. tonsurans based on the sequence analysis. In all, 34 of the 52 specimens lacking cultural growth were detected by PCR as TR, and 18 specimens could be identified as TI. The results of dermatophyte identification of culture-negative nail samples were also in agreement with the results of sequence analysis. Molecular biological methods are well applicable, and they show high reliability for direct dermatophyte identification in nail samples without prior cultivation. Especially for nail samples without cultural growth, PCR-based dermatophyte identification was highly specific and sensitive.
Collapse
Affiliation(s)
- Carolin Mehlhorn
- Haut- und Laborarzt/Allergologie, Andrologie, Tätigkeitsschwerpunkt: Tropen- und Reisedermatologie (DDA), labopart - Medizinische Laboratorien, Labor Leipzig-Mölbis, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland
| | - Silke Uhrlaß
- Haut- und Laborarzt/Allergologie, Andrologie, Tätigkeitsschwerpunkt: Tropen- und Reisedermatologie (DDA), labopart - Medizinische Laboratorien, Labor Leipzig-Mölbis, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland
| | - Esther Klonowski
- Haut- und Laborarzt/Allergologie, Andrologie, Tätigkeitsschwerpunkt: Tropen- und Reisedermatologie (DDA), labopart - Medizinische Laboratorien, Labor Leipzig-Mölbis, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland
| | - Constanze Krüger
- Haut- und Laborarzt/Allergologie, Andrologie, Tätigkeitsschwerpunkt: Tropen- und Reisedermatologie (DDA), labopart - Medizinische Laboratorien, Labor Leipzig-Mölbis, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland
| | - Uwe Paasch
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig AöR und Medizinische Fakultät der Universität Leipzig, Leipzig, Deutschland
| | - Jan C Simon
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig AöR und Medizinische Fakultät der Universität Leipzig, Leipzig, Deutschland
| | - Pietro Nenoff
- Haut- und Laborarzt/Allergologie, Andrologie, Tätigkeitsschwerpunkt: Tropen- und Reisedermatologie (DDA), labopart - Medizinische Laboratorien, Labor Leipzig-Mölbis, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland.
| |
Collapse
|
4
|
Bagra JK, Nair SS, Athira V, Suman Kumar M, Kumar M, Thomas P, Kumar B, Chaturvedi VK, Dandapat P, Abhishek. In vitro virulotyping, antifungal susceptibility testing and DNA fingerprinting of Microsporum canis strains of canine and feline origin. Comp Immunol Microbiol Infect Dis 2024; 104:102100. [PMID: 38043450 DOI: 10.1016/j.cimid.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
Microsporum canis is considered the common dermatophyte agent associated with ringworm in felines and canines. In the present study, we sampled n = 548 felines and canines for the probable isolation of M. canis. The rate of isolation from the cats and dogs was 70.27 % (52/74) and 1.68 % (8/474), respectively and Persian cats were found to be highly susceptible to M. canis infection. The strains were evaluated for their production of phospholipase, lipase, catalase, and hemolysis and their ability to grow at 35 ℃. All the strains were identified as low producers of catalase and n = 17 strains exhibited high thermotolerance ability. Terbinafine was found to be the most effective antifungal drug and fluconazole was the least effective, in vitro. AFLP analysis revealed three genotypes of M. canis with 15 sub-clusters showing ≥ 90 % similarity and 7 sub-clusters exhibiting 100 % similarity. However, the phenotypic characters cannot be attributed based on the AFLP profiles.
Collapse
Affiliation(s)
- Jitendra Kumar Bagra
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sonu S Nair
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - V Athira
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - M Suman Kumar
- Division of Veterinary Public Health, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Manish Kumar
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Bablu Kumar
- Division of Biological Products, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - V K Chaturvedi
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Premanshu Dandapat
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Abhishek
- Division of Bacteriology and Mycology, ICAR, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
5
|
Moskaluk AE, VandeWoude S. Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens 2022; 11:pathogens11090957. [PMID: 36145389 PMCID: PMC9502385 DOI: 10.3390/pathogens11090957] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. Classification of many of these species has recently changed due to genetic analysis, potentially affecting clinical diagnosis and disease management. In this review, we discuss dermatophyte classification including name changes for medically important species, current and potential diagnostic techniques for detecting dermatophytes, and an in-depth review of Microsporum canis, a prevalent zoonotic dermatophyte. Fungal culture is still considered the “gold standard” for diagnosing dermatophytosis; however, modern molecular assays have overcome the main disadvantages of culture, allowing for tandem use with cultures. Further investigation into novel molecular assays for dermatophytosis is critical, especially for high-density populations where rapid diagnosis is essential for outbreak prevention. A frequently encountered dermatophyte in clinical settings is M. canis, which causes dermatophytosis in humans and cats. M. canis is adapting to its primary host (cats) as one of its mating types (MAT1-2) appears to be going extinct, leading to a loss of sexual reproduction. Investigating M. canis strains around the world can help elucidate the evolutionary trajectory of this fungi.
Collapse
|
6
|
Ciesielska A, Stączek P. A new molecular marker for species-specific identification of Microsporum canis. Braz J Microbiol 2020; 51:1505-1508. [PMID: 32696419 PMCID: PMC7688866 DOI: 10.1007/s42770-020-00340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022] Open
Abstract
Species identification of dermatophytes by conventional mycological methods based on macro- and microscopy analysis is time-consuming and has a lot of limitations such as slow fungal growth or low specificity. Thus, there is a need for the development of molecular methods that would provide reliable and prompt identification of this group of medically important fungi. The are many reports in the literature concerning PCR identification of dermatophyte species, but still, there are not many PCR assays for the separate detection of members of the genera Microsporum, especially Microsporum canis (zoophilic species) and Microsporum audouinii (anthropophilic species). The correct distinction of these species is important to determine the source of infection to implement the appropriate action to eliminate the path of infection transmission. In this paper, we present such a PCR-based method targeting velB gene that uses a set of two primers—Mc-VelB-F (5′-CTTCCCCACCCGCAACATC-3′) and Mc-VelB-R (5′-TGTGGCTGCACCTGAGAGTGG-3′). The amplified fragment is specific due to the presence of (CAGCAC)8 microsatellite sequence only in the velB gene of M. canis. DNA from 153 fungal samples was used in PCR assay followed by electrophoretic analysis. The specificity of the designed set of primers was also confirmed using the online BLAST-Primer tool. The positive results were observed only in the case of M. canis isolates, and no positive results were obtained neither for other dermatophytes and non-dermatophyte fungi nor for other Eukaryotes, including the human genome sequence, as well as the representatives of bacterial and viral taxa. The developed PCR assay using the proposed Mc-VelB-F and Mc-velB-R primers can be included in the algorithm of M. canis detection in animals and humans.
Collapse
Affiliation(s)
- Anita Ciesielska
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Paweł Stączek
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
7
|
Leung AK, Lam JM, Leong KF, Hon KL. Tinea corporis: an updated review. Drugs Context 2020; 9:dic-2020-5-6. [PMID: 32742295 PMCID: PMC7375854 DOI: 10.7573/dic.2020-5-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tinea corporis is a common fungal infection that mimics many other annular lesions. Physicians must familiarize themselves with this condition and its treatment. Objective This article aimed to provide a narrative updated review on the evaluation, diagnosis, and treatment of tinea corporis. Methods A PubMed search was performed with Clinical Queries using the key term ‘tinea corporis.’ The search strategy included clinical trials, meta-analyses, randomized controlled trials, observational studies, and reviews. The search was restricted to the English language. The information retrieved from the mentioned search was used in the compilation of the present article. Results Tinea corporis typically presents as a well-demarcated, sharply circumscribed, oval or circular, mildly erythematous, scaly patch or plaque with a raised leading edge. Mild pruritus is common. The diagnosis is often clinical but can be difficult with prior use of medications, such as calcineurin inhibitors or corticosteroids. Dermoscopy is a useful and non-invasive diagnostic tool. If necessary, the diagnosis can be confirmed by microscopic examination of potassium hydroxide wet-mount preparations of skin scrapings from the active border of the lesion. Fungal culture is the gold standard to diagnose dermatophytosis especially if the diagnosis is in doubt and results of other tests are inconclusive or the infection is widespread, severe, or resistant to treatment. The standard treatment of tinea corporis is with topical antifungals. Systemic antifungal treatment is indicated if the lesion is multiple, extensive, deep, recurrent, chronic, or unresponsive to topical antifungal treatment, or if the patient is immunodeficient. Conclusion The diagnosis of tinea corporis is usually clinical and should pose no problem to the physician provided the lesion is typical. However, many clinical variants of tinea corporis exist, rendering the diagnosis difficult especially with prior use of medications, such as calcineurin inhibitors or corticosteroids. As such, physicians must be familiar with this condition so that an accurate diagnosis can be made and appropriate treatment initiated.
Collapse
Affiliation(s)
- Alexander Kc Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong
| |
Collapse
|
8
|
Zhang F, Tan C, Xu Y, Yang G. FSH1 regulates the phenotype and pathogenicity of the pathogenic dermatophyte Microsporum canis. Int J Mol Med 2019; 44:2047-2056. [PMID: 31573050 PMCID: PMC6844631 DOI: 10.3892/ijmm.2019.4355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Microsporum canis (M. canis) is a common pathogen that causes tinea capitis and is present worldwide. The incidence of M. canis infection, particularly tinea capitis, has been increasing in China. In our previous studies, family of serine hydrolases 1 (FSH1) was identified as a potential virulence factor in tinea capitis infection caused by M. canis. To determine the function of this gene in M. canis, FSH1 was knocked down using double-stranded RNA interference mediated by Agrobacterium tumefaciens. Reverse transcription-quantitative PCR analysis was used to confirm gene knockdown. Loss of FSH1 expression by RNAi resulted in a minor phenotype alteration, but M. canis pathogenicity in guinea pig cutaneous infection was decreased compared with the wild-type strain. To the best of our knowledge, the present study is the first to demonstrate that FSH1 is associated with macroconidia septa formation and is an important contributor to M. canis virulence. These findings may advance the understanding of the function of the FSH1 gene and provide a foundation for future studies on macroconidia septa formation and pathogenicity of M. canis.
Collapse
Affiliation(s)
- Furong Zhang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Chengdu, Sichuan 11736, P.R. China
| | - Can Tan
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Chengdu, Sichuan 11736, P.R. China
| | - Yu Xu
- Department of Dermatology, Hospital of Anjing Town, Chengdu, Sichuan 11736, P.R. China
| | - Guoling Yang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Chengdu, Sichuan 11736, P.R. China
| |
Collapse
|
9
|
Leal C, Silva G, Silva G, Silva L, Pinheiro Júnior J, Mota R. Padronização de uma PCR para diagnóstico molecular de Microsporum canis em amostras de pelos e crostas de cães e gatos. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-9809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivou-se neste estudo padronizar um protocolo de reação em cadeia da polimerase (PCR) para detecção de Microsporum canis em amostras de pelos e/ou crostas de cães e gatos. Foram selecionadas 48 amostras previamente identificadas por meio de cultura. Destas, 23 foram positivas para dermatófitos no cultivo. Padronizou-se a PCR a partir de primers desenhados para o alvo M. canis. Sessenta e um por cento (14/23) das amostras positivas para dermatófitos foram identificadas como M. canis em cultura. Desse total, 71,4% (10/14) apresentaram um fragmento de 218pb compatível com o esperado para a espécie fúngica alvo dessa reação. Observou-se uma sensibilidade de 71,4% e especificidade de 100% na PCR, além de uma boa concordância entre essas técnicas de diagnóstico (Kappa: 0,78; P<0,0001). O protocolo utilizado neste estudo apresentou alta especificidade na detecção de M. canis diretamente de amostras de pelos e/ou crostas de cães e gatos, viabilizando um diagnóstico mais rápido e específico, podendo esse protocolo ser empregado como um método confirmatório para agilizar a detecção de M. canis.
Collapse
Affiliation(s)
- C.A.S. Leal
- Universidade Federal Rural de Pernambuco, Brazil
| | - G.G. Silva
- Universidade Federal Rural de Pernambuco, Brazil
| | - G.M. Silva
- Universidade Federal Rural de Pernambuco, Brazil
| | | | | | - R.A. Mota
- Universidade Federal Rural de Pernambuco, Brazil
| |
Collapse
|
10
|
Tinea Capitis: Current Review of the Literature. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Assessment of the subtilisin genes in Trichophyton rubrum and Microsporum canis from dermatophytosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2745-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Selection and validation of reference genes for qRT-PCR analysis of gene expression in Microsporum canis growing under different adhesion-inducing conditions. Sci Rep 2018; 8:1197. [PMID: 29352152 PMCID: PMC5775245 DOI: 10.1038/s41598-018-19680-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Dermatophytes are the group of filamentous fungi infecting keratinized structures such as skin, hair, and nails. Knowledge about genes and molecular mechanisms responsible for pathogenicity, as well as other biological properties of Microsporum canis is still relatively poor. The qRT-PCR is a reliable technique for quantifying gene expression across various biological processes, and choosing a set of suitable reference genes to normalize the expression data is a crucial step of this technique. We investigated the suitability of nine candidate reference genes: β-act, β-tub, adp-rf, ef1-α, sdha, rpl2, mbp1, psm1, and rGTPa for gene expression analysis in the dermatophyte M. canis in response to different carbon sources, phosphate levels, and pH shifts - factors that are extremely important and necessary for growth of dermatophyte in the host tissue. The transcription stability of these genes was evaluated using NormFinder, geNorm, BestKeeper, and RefFinder software. Regarding expression stability, mbp1, β-act, and sdha were the most stable housekeeping genes which we recommend for future qRT-PCR studies on M. canis strains. To the best of our knowledge this is the first study on selection and validation of reference genes for qRT-PCR data normalization in M. canis growth in culture media which promote adhesion-inducing conditions.
Collapse
|
13
|
Lockwood SL, Mount R, Lewis TP, Schick AE. Concurrent development of generalised demodicosis, dermatophytosis and meticillin‐resistant
Staphylococcus pseudintermedius
secondary to inappropriate treatment of atopic dermatitis in an adult dog. VETERINARY RECORD CASE REPORTS 2017. [DOI: 10.1136/vetreccr-2017-000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Rebecca Mount
- Dermatology for Animals4000 Montgomery Blvd NEAlbuquerqueNew Mexico87109USA
| | - Thomas P Lewis
- Dermatology for Animals86 W Juniper AveGilbertArizona85233USA
| | | |
Collapse
|
14
|
Verrier J, Monod M. Diagnosis of Dermatophytosis Using Molecular Biology. Mycopathologia 2016; 182:193-202. [PMID: 27480761 DOI: 10.1007/s11046-016-0038-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Identification of fungi in dermatological samples using PCR is reliable and provides significantly improved results in comparison with cultures. It is possible to identify the infectious agent when negative results are obtained from cultures. In addition, identification of the infectious agent can be obtained in 1 day. Conventional and real-time PCR methods used for direct fungus identification in collected samples vary by DNA extraction methods, targeted DNA and primers, and the way of analysing the PCR products. The choice of a unique method in a laboratory is complicated because the results expected from skin and hair sample analysis are different from those expected in cases of onychomycosis. In skin and hair samples, one dermatophyte among about a dozen possible species has to be identified. In onychomycosis, the infectious agents are mainly Trichophyton rubrum and, to a lesser extent, Trichophyton interdigitale, but also moulds insensitive to oral treatments used for dermatophytes, which renders fungal identification mandatory. The benefits obtained with the use of PCR methods for routine analysis of dermatological samples have to be put in balance with the relative importance of getting a result in a short time, the price of molecular biology reagents and equipment, and especially the time spent conducting laboratory manipulations.
Collapse
Affiliation(s)
- Julie Verrier
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), Institut de Biologie en Santé (PBH-IRIS), CHU Angers, Université d'Angers, 4 rue Larrey, 49933, Angers, France
| | - Michel Monod
- Laboratoire de Mycologie, Service de Dermatologie, Centre Hospitalier Universitaire Vaudois, BT403, 1011, Lausanne, Switzerland.
| |
Collapse
|
15
|
Kobylak N, Bykowska B, Kurzyk E, Nowicki R, Brillowska-Dąbrowska A. PCR and real-time PCR approaches to the identification of Arthroderma otae species Microsporum canis and Microsporum audouinii/Microsporum ferrugineum. J Eur Acad Dermatol Venereol 2016; 30:1819-1822. [PMID: 27306227 DOI: 10.1111/jdv.13681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The identification of species in the Arthroderma otae complex is essential to determine the origin of infection and to eliminate the risk of transmission. Microsporum canis is a zoophilic species, whereas Microsporum audouinii and Microsporum ferrugineum are anthropophilic species. In this paper, we propose alternative methods that permit species-specific identification of both anthropophilic and zoophilic members of the A. otae complex METHODS: Two PCR assays were designed based on differences in the DNA fragment encoding β-tubulin and were applied in both traditional and real-time PCR using DNA isolated by rapid method from culture. RESULT The two assays presented in this study enable the identification of M. canis and M. audouinii/M. ferrugineum with 100% sensitivity and specificity by both traditional and real-time PCR. CONCLUSION We developed a new diagnostic assay using specific primers and both traditional and real-time PCR reactions that can be applied in routine laboratory praxis as well as in epidemiological studies to detect M. canis and M. audouinii/M. ferrugineum DNA from a pure culture.
Collapse
Affiliation(s)
- N Kobylak
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - B Bykowska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - E Kurzyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - R Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - A Brillowska-Dąbrowska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
16
|
Admani S, Jinna S, Friedlander SF, Sloan B. Cutaneous infectious diseases: Kids are not just little people. Clin Dermatol 2015; 33:657-71. [PMID: 26686017 DOI: 10.1016/j.clindermatol.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The changes in immune response that occur with age play a significant role in disease presentation and patient management. Evolution of the innate and adaptive immune systems throughout life, influenced partly by hormonal changes associated with puberty, plays a role in the differences between pediatric and adult response to disease. We review a series of manifestations of dermatologic infectious diseases spanning bacterial, viral, and fungal origins that can be seen in both pediatric and adult age groups and highlight similarities and differences in presentation and disease course. Therapeutic options are also discussed for these infectious diseases, with particular attention to variations in management between these population subgroups, given differences in pharmacokinetics and side effect profiles.
Collapse
Affiliation(s)
- Shehla Admani
- Department of Pediatric Dermatology, University of California at San Diego School of Medicine, San Diego, CA
| | - Sphoorthi Jinna
- Department of Dermatology, University of Connecticut Health Sciences, 21 South Road, Farmington, CT, 06032
| | - Sheila Fallon Friedlander
- Fellowship Training Program, Rady Children's Hospital, Department of Clinical Pediatrics & Medicine, University of California at San Diego School of Medicine, 8010 Frost Street, Suite 602, San Diego, CA 92123
| | - Brett Sloan
- Department of Dermatology, University of Connecticut Health Sciences, 21 South Road, Farmington, CT, 06032.
| |
Collapse
|
17
|
Abstract
Microsporum canis is a pathogenic fungus with worldwide distribution that causes tinea capitis in animals and humans. M. canis also causes invasive infection in immunocompromised patients. To defy pathogenic fungal infection, the host innate immune system is the first line of defense. As an important arm of innate immunity, the inflammasomes are intracellular multiprotein complexes that control the activation of caspase-1, which cleaves proinflammatory cytokine pro-interleukin-1β (IL-1β) into its mature form. To determine whether the inflammasome is involved in the host defense against M. canis infection, we challenged human monocytic THP-1 cells and mouse dendritic cells with a clinical strain of M. canis isolated from patients with tinea capitis. We found that M. canis infection triggered rapid secretion of IL-1β from both THP-1 cells and mouse dendritic cells. Moreover, by using gene-specific shRNA and competitive inhibitors, we determined that M. canis-induced IL-1β secretion was dependent on NLRP3. The pathways proposed for NLRP3 inflammasome activation, namely, cathepsin B activity, K(+) efflux, and reactive oxygen species production, were all required for the inflammasome activation triggered by M. canis. Meanwhile, Syk, Dectin-1, and Card9 were found to be involved in M. canis-induced IL-1β secretion via regulation of pro-IL-1β transcription. More importantly, our data revealed that M. canis-induced production of IL-1β was dependent on the NLRP3 inflammasome in vivo. Together, this study unveils that the NLRP3 inflammasome exerts a critical role in host innate immune responses against M. canis infection, and our data suggest that diseases that result from M. canis infection might be controlled by regulating the activation of inflammasomes.
Collapse
|