1
|
Liao TY, Huang YT, Lee TF, Hsueh PR, Yu CJ, Chien JY. Clinical significance of mutations in dihydropteroate synthase in Pneumocystis jirovecii pneumonia among non-HIV-infected patients. Int J Antimicrob Agents 2024; 63:107019. [PMID: 37925109 DOI: 10.1016/j.ijantimicag.2023.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Dihydropteroate synthase (DHPS) mutations may be associated with trimethoprim-sulfamethoxazole resistance in Pneumocystis jirovecii pneumonia (PCP) and worse clinical outcomes. However, the clinical significance of DHPS mutations in PCP among non-human immunodeficiency virus (HIV)-infected patients remains unclear. METHODS Patients with PCP in three tertiary referral hospitals in Taiwan between 2016 and 2020 were retrospectively enrolled. Two point mutations, Thr55Ala and Pro57Ser, in the DHPS protein were analysed. Patients with invalid DHPS mutations in the respiratory specimen, chronic respiratory failure, receiving endotracheal intubation for surgical intervention, HIV infection, Pneumocystis jirovecii colonisation, and no lactate dehydrogenase (LDH) data were excluded. The primary outcome was 30-day survival. RESULTS A total of 215 patients were analysed. Mutants inside DHPS were found in 78 patients (36.3%) and 68 patients (31.6%) died within 30 days. A total of 214 patients (99.5%) received trimethoprim-sulfamethoxazole as the first-line treatment. The rates of mechanical ventilation, 30-day, and in-hospital mortality were similar between wild-type and mutant DHPS PCP. After adjusting for important confounders, LDH > 500 µ/L (adjusted hazard ratio [aHR] = 2.448, P = 0.001), pneumonia severity index > 135 mg/dL (aHR = 1.689, P = 0.049), and having solid tumours (aHR = 1.832, P = 0.034) were independently associated with higher mortality. In subgroup analysis, mutant DHPS PCP patients had less 30-day mortality among patients aged > 65 years (P = 0.049), with lymphopenia (P = 0.040), and those without solid tumour (P = 0.045). CONCLUSIONS In non-HIV-infected PCP, point mutants inside DHPS may not be associated with trimethoprim-sulfamethoxazole treatment outcomes. Further prospective large-scale studies are warranted.
Collapse
Affiliation(s)
- Ting-Yu Liao
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Rogers TR, Verweij PE, Castanheira M, Dannaoui E, White PL, Arendrup MC. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2053-2073. [PMID: 35703391 PMCID: PMC9333407 DOI: 10.1093/jac/dkac161] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
de la Horra C, Friaza V, Morilla R, Delgado J, Medrano FJ, Miller RF, de Armas Y, Calderón EJ. Update on Dihydropteroate Synthase (DHPS) Mutations in Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7100856. [PMID: 34682277 PMCID: PMC8540849 DOI: 10.3390/jof7100856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
A Pneumocystis jirovecii is one of the most important microorganisms that cause pneumonia in immunosupressed individuals. The guideline for treatment and prophylaxis of Pneumocystis pneumonia (PcP) is the use of a combination of sulfa drug-containing trimethroprim and sulfamethoxazole. In the absence of a reliable method to culture Pneumocystis, molecular techniques have been developed to detect mutations in the dihydropteroate synthase gene, the target of sulfa drugs, where mutations are related to sulfa resistance in other microorganisms. The presence of dihydropteroate synthase (DHPS) mutations has been described at codon 55 and 57 and found almost around the world. In the current work, we analyzed the most common methods to identify these mutations, their geographical distribution around the world, and their clinical implications. In addition, we describe new emerging DHPS mutations. Other aspects, such as the possibility of transmitting Pneumocystis mutated organisms between susceptible patients is also described, as well as a brief summary of approaches to study these mutations in a heterologous expression system.
Collapse
Affiliation(s)
- Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Delgado
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Robert F. Miller
- Institute for Global Health, University College London, London WC1E 6JB, UK;
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí,” Havana 11400, Cuba
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| |
Collapse
|
4
|
Zhu M, Ye N, Xu J. Clinical characteristics and prevalence of dihydropteroate synthase gene mutations in Pneumocystis jirovecii-infected AIDS patients from low endemic areas of China. PLoS One 2020; 15:e0238184. [PMID: 32911508 PMCID: PMC7482917 DOI: 10.1371/journal.pone.0238184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is an opportunistic and potentially life-threatening infection of AIDS patients caused by the fungus Pneumocystis jirovecii (P. jirovecii). Trimethoprim-sulfamethoxazole (TMP-SMX) is the most commonly used drug combination in the treatment and prophylaxis of PCP. However, with long-term use of this combination, mutations in the dihydropteroate synthase (DHPS) gene of P. jirovecii bring about the development of resistance. Data on the prevalence of P. jirovecii and its DHPS mutants in China, especially in low endemic areas, are still limited. Thus, in the present study, we measured the P. jirovecii infection rate among HIV-positive and AIDS (HIV/AIDS) patients with suspected PCP and investigated the relationship between CD4+ T cell count and PCP occurrence. As well as the polymerase chain reaction (PCR) analysis and sequencing, the restriction fragment length polymorphism (RFLP) method was used to analyze DHPS point mutation in P. jirovecii strains. P. jirovecii was detected in 40.82% of cases. The clinical symptoms and signs of PCP were not typical; with decreasing CD4+ T cell counts, PCP infection in HIV/AIDS patients increased. In only one case (1.67%), the patients' DHPS gene could not be cut by the Acc I restriction enzyme. Furthermore, mutation at codon 171 was detected in 11 cases and no mutation was found at codon 57. Patients treated with sulfamethoxazole combined with Voriconazole or Caspofungin exhibited favorable results. After treatment, the symptoms of dyspnea were alleviated, and chest computed tomography findings showed the improvement of lung shadows. These indicated that the prevalence of DHPS mutations in P. jirovecii isolates in AIDS-PCP patients in the region was low. Thus, the contribution of gene mutations to treatment failure requires further research.
Collapse
Affiliation(s)
- Mingli Zhu
- Department of Microbiology and Immunology, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Clinical Laboratory, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ning Ye
- Department of Clinical Laboratory, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
5
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
6
|
Shah K, Queener S, Cody V, Pace J, Gangjee A. Development of substituted pyrido[3,2-d]pyrimidines as potent and selective dihydrofolate reductase inhibitors for pneumocystis pneumonia infection. Bioorg Med Chem Lett 2019; 29:1874-1880. [PMID: 31176699 DOI: 10.1016/j.bmcl.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii (pj) can lead to serious health consequences in patients with an immunocompromised system. Trimethoprim (TMP), used as first-line therapy in combination with sulfamethoxazole, is a selective but only moderately potent pj dihydrofolate reductase (pjDHFR) inhibitor, whereas non-clinical pjDHFR inhibitors, such as, piritrexim and trimetrexate are potent but non-selective pjDHFR inhibitors. To meet the clinical needs for a potent and selective pjDHFR inhibitor for PCP treatment, fourteen 6-substituted pyrido[3,2-d]pyrimidines were developed. Comparison of the amino acid residues in the active site of pjDHFR and human DHFR (hDHFR) revealed prominent amino acid differences which could be exploited to structurally design potent and selective pjDHFR inhibitors. Molecular modeling followed by enzyme assays of the compounds revealed 15 as the best compound of the series with an IC50 of 80 nM and 28-fold selectivity for inhibiting pjDHFR over hDHFR. Compound 15 serves as the lead analog for further structural variations to afford more potent and selective pjDHFR inhibitors.
Collapse
Affiliation(s)
- Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA 15282, United States
| | - Sherry Queener
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Vivian Cody
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, United States
| | - Jim Pace
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA 15282, United States.
| |
Collapse
|
7
|
Shah K, Lin X, Queener SF, Cody V, Pace J, Gangjee A. Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents. Bioorg Med Chem 2018; 26:2640-2650. [PMID: 29691153 DOI: 10.1016/j.bmc.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/14/2018] [Indexed: 11/28/2022]
Abstract
To combine the potency of trimetrexate (TMQ) or piritrexim (PTX) with the species selectivity of trimethoprim (TMP), target based design was carried out with the X-ray crystal structure of human dihydrofolate reductase (hDHFR) and the homology model of Pneumocystis jirovecii DHFR (pjDHFR). Using variation of amino acids such as Met33/Phe31 (in pjDHFR/hDHFR) that affect the binding of inhibitors due to their distinct positive or negative steric effect at the active binding site of the inhibitor, we designed a series of substituted-pyrrolo[2,3-d]pyrimidines. The best analogs displayed better potency (IC50) than PTX and high selectivity for pjDHFR versus hDHFR, with 4 exhibiting a selectivity for pjDHFR of 24-fold.
Collapse
Affiliation(s)
- Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Xin Lin
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Sherry F Queener
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Vivian Cody
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, United States
| | - Jim Pace
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
8
|
Huang YS, Yang JJ, Lee NY, Chen GJ, Ko WC, Sun HY, Hung CC. Treatment of Pneumocystis jirovecii pneumonia in HIV-infected patients: a review. Expert Rev Anti Infect Ther 2017; 15:873-892. [PMID: 28782390 DOI: 10.1080/14787210.2017.1364991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pneumocystis pneumonia is a potentially life-threatening pulmonary infection that occurs in immunocompromised individuals and HIV-infected patients with a low CD4 cell count. Trimethoprim-sulfamethoxazole has been used as the first-line agent for treatment, but mutations within dihydropteroate synthase gene render potential resistance to sulfamide. Despite advances of combination antiretroviral therapy (cART), Pneumocystis pneumonia continues to occur in HIV-infected patients with late presentation for cART or virological and immunological failure after receiving cART. Areas covered: This review summarizes the diagnosis and first-line and alternative treatment and prophylaxis for Pneumocystis pneumonia in HIV-infected patients. Articles for this review were identified through searching PubMed. Search terms included: 'Pneumocystis pneumonia', 'Pneumocystis jirovecii pneumonia', 'Pneumocystis carinii pneumonia', 'trimethoprim-sulfamethoxazole', 'primaquine', 'trimetrexate', 'dapsone', 'pentamidine', 'atovaquone', 'echinocandins', 'human immunodeficiency virus infection', 'acquired immunodeficiency syndrome', 'resistance to sulfamide' and combinations of these terms. We limited the search to English language papers that were published between 1981 and March 2017. We screened all identified articles and cross-referenced studies from retrieved articles. Expert commentary: Trimethoprim-sulfamethoxazole will continue to be the first-line agent for Pneumocystis pneumonia given its cost, availability of both oral and parenteral formulations, and effectiveness or efficacy in both treatment and prophylaxis. Whether resistance due to mutations within dihydropteroate synthase gene compromises treatment effectiveness remains controversial. Continued search for effective alternatives with better safety profiles for Pneumocystis pneumonia is warranted.
Collapse
Affiliation(s)
- Yu-Shan Huang
- a Department of Internal Medicine , National Taiwan University Hospital Hsin-Chu Branch , Hsin-Chu , Taiwan
| | - Jen-Jia Yang
- b Department of Internal Medicine , Po Jen General Hospital , Taipei , Taiwan
| | - Nan-Yao Lee
- c Department of Internal Medicine , National Cheng Kung University Hospital , Tainan , Taiwan.,d Department of Medicine , College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Guan-Jhou Chen
- e Department of Internal Medicine , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Wen-Chien Ko
- c Department of Internal Medicine , National Cheng Kung University Hospital , Tainan , Taiwan.,d Department of Medicine , College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Hsin-Yun Sun
- e Department of Internal Medicine , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chien-Ching Hung
- e Department of Internal Medicine , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan.,f Department of Parasitology , National Taiwan University College of Medicine , Taipei , Taiwan.,g Department of Medical Research , China Medical University Hospital , Taichung , Taiwan.,h China Medical University , Taichung , Taiwan
| |
Collapse
|
9
|
High Prevalence of Pneumocystis jirovecii Dihydropteroate Synthase Gene Mutations in Patients with a First Episode of Pneumocystis Pneumonia in Santiago, Chile, and Clinical Response to Trimethoprim-Sulfamethoxazole Therapy. Antimicrob Agents Chemother 2017; 61:AAC.01290-16. [PMID: 27855071 DOI: 10.1128/aac.01290-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
Mutations in the dihydropteroate synthase (DHPS) gene of Pneumocystis jirovecii are associated with the failure of sulfa prophylaxis. They can develop by selection in patients receiving sulfa drugs or be acquired via person-to-person transmission. DHPS mutations raise concern about the decreasing efficacy of sulfa drugs, the main available therapeutic tool for Pneumocystis pneumonia (PCP). The prevalence of Pneumocystis DHPS mutations was examined in Pneumocystis isolates from 56 sulfa-prophylaxis-naive adults with a first episode of PCP from 2002 to 2010 in Santiago, Chile. Their clinical history was reviewed to analyze the effect of these mutations on response to trimethoprim-sulfamethoxazole (TMP-SMX) therapy and outcome. Mutant genotypes occurred in 22 (48%) of 46 HIV-infected patients and in 5 (50%) of 10 HIV-uninfected patients. Compared to patients with a wild-type genotype, those with mutant genotypes were more likely to experience sulfa treatment-limiting adverse reactions and to have a twice-longer duration of mechanical ventilation if mechanically ventilated. Specific genotypes did not associate with death, which occurred in none of the HIV-infected patients and in 50% of the non-HIV-infected patients. Chile has a high prevalence of DHPS mutations, which were presumably acquired through interhuman transmission because patients were not on sulfa prophylaxis. These results contrast with the low prevalence observed in other Latin American countries with similar usage of sulfa drugs, suggesting that additional sources of resistant genotypes may be possible. The twice-longer duration of mechanical ventilation in patients with mutant DHPS genotypes suggests a decreased efficacy of TMP-SMX and warrants collaborative studies to assess the relevance of DHPS mutations and further research to increase therapeutic options for PCP.
Collapse
|
10
|
Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jirovecii pneumonia and identification of dihydropteroate synthase (DHPS) mutations. Diagn Microbiol Infect Dis 2016; 87:32-36. [PMID: 27789058 DOI: 10.1016/j.diagmicrobio.2016.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Abstract
The PneumoGenius® real-time PCR assay is a new commercial multiplex real-time PCR method, which detects the Pneumocystis mitochondrial ribosomal large subunit (mtLSU) and two dihydropteroate synthase (DHPS) point mutations. To evaluate the clinical performance of this new real-time PCR assay we tested 120 extracted DNA samples from bronchoalveolar lavage specimens. These set of extracted DNA samples had already tested positive for Pneumocystis and patients had been classified in probable and unlikely PCP in a previous study. To evaluate de accuracy of the DHPS mutant's identification, an "in house" PCR and sequencing was performed. The sensitivity and specificity of PneumoGenius® PCR in discriminating between probable and unlikely Pneumocystis pneumonia (PCP) were 70% and 82% respectively. PneumoGenius® PCR was able to genotype more samples than "in house" DHPS PCR and sequencing. The same DHPS mutations were observed by both methods in four patients: two patients with a single mutation in position 171 (Pro57Ser) and two patients with a double mutation in position 165 (Thr55Ala) and in position 171 (Pro57Ser). A low rate of P. jirovecii (4.5%) harboring DHPS mutations was found, comparable to rates observed in other European countries. The PneumoGenius® real-time PCR is a suitable real-time PCR for PCP diagnosis and detection of DHPS mutants. The added value of DHPS mutation identification can assist in understanding the role of these mutations in prophylaxis failure or treatment outcome.
Collapse
|
11
|
Maschmeyer G, Helweg-Larsen J, Pagano L, Robin C, Cordonnier C, Schellongowski P. ECIL guidelines for treatment of Pneumocystis jirovecii pneumonia in non-HIV-infected haematology patients. J Antimicrob Chemother 2016; 71:2405-13. [PMID: 27550993 DOI: 10.1093/jac/dkw158] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation of systemic antimicrobial treatment of Pneumocystis jirovecii pneumonia (PCP) is triggered by clinical signs and symptoms, typical radiological and occasionally laboratory findings in patients at risk of this infection. Diagnostic proof by bronchoalveolar lavage should not delay the start of treatment. Most patients with haematological malignancies present with a severe PCP; therefore, antimicrobial therapy should be started intravenously. High-dose trimethoprim/sulfamethoxazole is the treatment of choice. In patients with documented intolerance to this regimen, the preferred alternative is the combination of primaquine plus clindamycin. Treatment success should be first evaluated after 1 week, and in case of clinical non-response, pulmonary CT scan and bronchoalveolar lavage should be repeated to look for secondary or co-infections. Treatment duration typically is 3 weeks and secondary anti-PCP prophylaxis is indicated in all patients thereafter. In patients with critical respiratory failure, non-invasive ventilation is not significantly superior to intubation and mechanical ventilation. The administration of glucocorticoids must be decided on a case-by-case basis.
Collapse
Affiliation(s)
- Georg Maschmeyer
- Department of Haematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Livio Pagano
- Institute of Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Christine Robin
- Department of Haematology, Assistance Publique-hôpitaux de Paris (APHP), Henri Mondor Teaching Hospital, Créteil, France University Paris-Est Créteil (UPEC), Créteil, France
| | - Catherine Cordonnier
- Department of Haematology, Assistance Publique-hôpitaux de Paris (APHP), Henri Mondor Teaching Hospital, Créteil, France University Paris-Est Créteil (UPEC), Créteil, France
| | - Peter Schellongowski
- Department of Medicine I, Intensive Care Unit 13i2, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria Intensive Care in Hematologic and Oncologic Patients (iCHOP)
| | | |
Collapse
|
12
|
Skalski JH, Kottom TJ, Limper AH. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 2015; 15:fov046. [PMID: 26071598 DOI: 10.1093/femsyr/fov046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.
Collapse
Affiliation(s)
- Joseph H Skalski
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
13
|
López-Sánchez C, Falcó V, Burgos J, Navarro J, Martín MT, Curran A, Miguel L, Ocaña I, Ribera E, Crespo M, Almirante B. Epidemiology and long-term survival in HIV-infected patients with Pneumocystis jirovecii pneumonia in the HAART era: experience in a university hospital and review of the literature. Medicine (Baltimore) 2015; 94:e681. [PMID: 25816039 PMCID: PMC4553998 DOI: 10.1097/md.0000000000000681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
As highly active antiretroviral treatment (HAART) is widely available, the incidence of Pneumocystis jirovecii pneumonia (PJP) has decreased significantly but still represents a significant cause of morbidity and mortality in developed countries. We analyzed all the cases with PJP in human immunodeficiency virus (HIV)-infected patients from 2000 to 2013 in a university hospital in Barcelona, Spain, and conducted a systematic literature review to evaluate data regarding incidence, mortality, and long-term survival after PJP in developed settings. One hundred thirty-six episodes of PJP were analyzed. During the study period, the incidence decreased significantly (from 13.4 cases/1000 patients-year to 3.3 cases/1000 patients-year, P < 0.001). Oppositely, median age of the patients increased from 34 years in 2000 to 45 in 2013 (P = 0.024). PJP preceded HIV diagnosis in nearly 50% of the cases. Fifteen (11%) patients died during the PJP episode. The main risk factor for in-hospital mortality in our cohort was age >50 years (odds ratio 4.96, 95% confidence interval [CI] 1.45-15.14). Patients who survived were followed-up during a mean time of 44 months. Overall 5-year survival of patients after hospital discharge was 73%. Survival likelihood was 54% higher (88% [95% CI 81-96]) among HAART-adherent patients. Mean age and the proportion of patients with unknown HIV infection at the time of PJP diagnosis have increased in developed countries in the HAART era. Although the incidence has decreased, in-hospital mortality remains stable in this setting. Long-term survival is very high among HAART-adherent patients.
Collapse
Affiliation(s)
- Cristina López-Sánchez
- From the Department of Infectious Diseases (CL-S, VF, JB, JN, AC, LM, IO, ER, MC, BA); and Department of Microbiology (MTM), University Hospital Valld'Hebron, UniversitatAutònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Le Gal S, Blanchet D, Damiani C, Guéguen P, Virmaux M, Abboud P, Guillot G, Kérangart S, Merle C, Calderon E, Totet A, Carme B, Nevez G. AIDS-related Pneumocystis jirovecii genotypes in French Guiana. INFECTION GENETICS AND EVOLUTION 2014; 29:60-7. [PMID: 25445659 DOI: 10.1016/j.meegid.2014.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/19/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
The study described Pneumocystis jirovecii (P. jirovecii) multilocus typing in seven AIDS patients living in French Guiana (Cayenne Hospital) and seven immunosuppressed patients living in Brest, metropolitan France (Brest Hospital). Archival P. jirovecii specimens were examined at the dihydropteroate synthase (DHPS) locus using a PCR-RFLP technique, the internal transcribed spacer (ITS) 1 and ITS 2 and the mitochondrial large subunit rRNA (mtLSUrRNA) gene using PCR and sequencing. Analysis of typing results were combined with an analysis of the literature on P. jirovecii mtLSUrRNA types and ITS haplotypes. A wild DHPS type was identified in six Guianese patients and in seven patients from metropolitan France whereas a DHPS mutant was infected in the remaining Guianese patient. Typing of the two other loci pointed out a high diversity of ITS haplotypes and an average diversity of mtLSUrRNA types in French Guiana with a partial commonality of these haplotypes and types described in metropolitan France and around the world. Combining DHPS, ITS and mtLSU types, 12 different multilocus genotypes (MLGs) were identified, 4 MLGs in Guianese patients and 8 MLGs in Brest patients. MLG analysis allows to discriminate patients in 2 groups according to their geographical origin. Indeed, none of the MLGs identified in the Guianese patients were found in the Brest patients and none of the MLGs identified in the Brest patients were found in the Guianese patients. These results show that in French Guiana (i) PCP involving DHPS mutants occur, (ii) there is a diversity of ITS and mtLSUrRNA types and (iii) although partial type commonality in this territory and metropolitan France can be observed, MLG analysis suggests that P. jirovecii organisms from French Guiana may present specific characteristics.
Collapse
Affiliation(s)
- Solène Le Gal
- University of Brest, LUBEM EA 3882, SFR 148, Brest, France; Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France.
| | | | - Céline Damiani
- Laboratory of Parasitology and Mycology, Amiens University Hospital, Amiens, France; University of Picardy-Jules Verne, UMR-I 01, Amiens, France
| | - Paul Guéguen
- Laboratory of Molecular Genetics and Histocompatibility, Brest University Hospital, Brest, France; University of Brest, INSERM U1078, Molecular Genetics and Epidemiological Genetics, SFR 148, Brest, France
| | | | | | | | | | - Cédric Merle
- University of Brest, LUBEM EA 3882, SFR 148, Brest, France
| | - Enrique Calderon
- Instituto de Biomedecina de Sevilla and CIBER de Epidemiologia y Salud Publica, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Anne Totet
- Laboratory of Parasitology and Mycology, Amiens University Hospital, Amiens, France; University of Picardy-Jules Verne, UMR-I 01, Amiens, France
| | - Bernard Carme
- Andrée Rosemon Hospital, Cayenne, French Guiana; University of Antilles-Guyane, EA 3593 EPaT, Cayenne, French Guiana
| | - Gilles Nevez
- University of Brest, LUBEM EA 3882, SFR 148, Brest, France; Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France.
| |
Collapse
|
15
|
Pneumocystis jirovecii infection and the associated dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) mutations in HIV-positive individuals from Pune, India. Mycopathologia 2014; 179:141-5. [PMID: 25266324 DOI: 10.1007/s11046-014-9818-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
The present study was undertaken to detect Pneumocystis jirovecii infection among HIV-positive patients presenting with symptoms of lower respiratory tract infection and analyze the associated dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) mutations. P. jirovecii infection was detected in 12.6% cases. We did not find DHPS gene mutations at the commonest positions of codon 55 and 57; however, mutation at codon 171 was detected in two cases. No mutations in DHFR gene were detected. The results indicate low prevalence of DHPS and DHFR mutations in Indian P. jirovecii isolates, suggesting that the selective pressure of sulfa drugs on the local strains has probably not reached the levels found in developed nations.
Collapse
|
16
|
Multilocus microsatellite genotyping array for investigation of genetic epidemiology of Pneumocystis jirovecii. J Clin Microbiol 2014; 52:1391-9. [PMID: 24523468 DOI: 10.1128/jcm.02531-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pneumocystis jirovecii is a symbiotic respiratory fungus that causes pneumonia (PcP) in immunosuppressed patients. Because P. jirovecii cannot be reliably cultured in vitro, it has proven difficult to study and gaps in our understanding of the organism persist. The release of a draft genome for the organism opens the door for the development of new genotyping approaches for studying its molecular epidemiology and global population structure. We identified and validated 8 putatively neutral microsatellite markers and 1 microsatellite marker linked to the dihydropteroate synthase gene (dhps), the enzymatic target of sulfa drugs used for PcP prevention and treatment. Using these tools, we analyzed P. jirovecii isolates from HIV-infected patients from three geographically distant populations: Uganda, the United States, and Spain. Among the 8 neutral markers, we observed high levels of allelic heterozygosity (average He, 0.586 to 0.842). Consistent with past reports, we observed limited global population structuring, with only the Ugandan isolates showing minor differentiation from the other two populations. In Ugandan isolates that harbored mutations in dhps, the microsatellite locus linked to dhps demonstrated a depressed He, consistent with positive directional selection for sulfa resistance mutations. Using a subset of these microsatellites, analyses of individual and paired samples from infections in San Francisco, CA, showed reliable typeability within a single infection and high discriminatory power between infections. These features suggest that this novel microsatellite typing approach will be an effective tool for molecular-epidemiological investigations into P. jirovecii population structure, transmission, and drug resistance.
Collapse
|
17
|
Prevalence and genotype distribution of Pneumocystis jirovecii in Cuban infants and toddlers with whooping cough. J Clin Microbiol 2013; 52:45-51. [PMID: 24131683 DOI: 10.1128/jcm.02381-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes the prevalence and genotype distribution of Pneumocystis jirovecii obtained from nasopharyngeal (NP) swabs from immunocompetent Cuban infants and toddlers with whooping cough (WC). A total of 163 NP swabs from 163 young Cuban children with WC who were admitted to the respiratory care units at two pediatric centers were studied. The prevalence of the organism was determined by a quantitative PCR (qPCR) assay targeting the P. jirovecii mitochondrial large subunit (mtLSU) rRNA gene. Genotypes were identified by direct sequencing of mtLSU ribosomal DNA (rDNA) and restriction fragment length polymorphism (RFLP) analysis of the dihydropteroate synthase (DHPS) gene amplicons. qPCR detected P. jirovecii DNA in 48/163 (29.4%) samples. mtLSU rDNA sequence analysis revealed the presence of three different genotypes in the population. Genotype 2 was most common (48%), followed in prevalence by genotypes 1 (23%) and 3 (19%); mixed-genotype infections were seen in 10% of the cases. RFLP analysis of DHPS PCR products revealed four genotypes, 18% of which were associated with resistance to sulfa drugs. Only contact with coughers (prevalence ratio [PR], 3.51 [95% confidence interval {CI}, 1.79 to 6.87]; P = 0.000) and exposure to tobacco smoke (PR, 1.82 [95% CI, 1.14 to 2.92]; P = 0.009) were statistically associated with being colonized by P. jirovecii. The prevalence of P. jirovecii in infants and toddlers with WC and the genotyping results provide evidence that this population represents a potential reservoir and transmission source of P. jirovecii.
Collapse
|