1
|
Aleman TS, Roman AJ, Uyhazi KE, Jiang YY, Bedoukian EC, Sumaroka A, Wu V, Swider M, Viarbitskaya I, Russell RC, Shagena EO, Santos AJ, Serrano LW, Parchinski KM, Kim RJ, Weber ML, Garafalo AV, Thompson DA, Maguire AM, Bennett J, Scoles DH, O'Neil EC, Morgan JIW, Cideciyan AV. Retinal Degeneration Associated With Biallelic RDH12 Variants: Longitudinal Evaluation of Retinal Structure and Visual Function in Pediatric Patients. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39693083 DOI: 10.1167/iovs.65.14.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Purpose The purpose of this study was to determine the natural history of the photoreceptor disease in a large group of pediatric patients with RHD12-associated Leber congenital amaurosis (RDH12-LCA), to estimate the changes expected over the duration of a clinical trial, and to define the relationship between the photoreceptor loss and visual dysfunction. Methods Forty-six patients representing 36 families were included. The great majority of patients were under the age of 18 years. Patients underwent complete ophthalmic examinations and imaging with various modalities including adaptive optics scanning laser ophthalmoscopy. Visual function was assessed with static and kinetic perimetry, and full-field stimulus test (FST) under dark- and light-adapted conditions. Results Patients had a severe and early onset retinal degeneration (EORD). Visual acuity losses showed a progression rate of 0.04 logMAR per year. A small foveal island could be retained but showed degeneration over time. Foveal cone sensitivity losses were predictable by the loss of photoreceptors. Peripapillary retina could be retained with no significant progression detectable. Peripapillary rod sensitivity was substantially less than expected from photoreceptor structure pointing to a large improvement potential. FST sensitivities were reliably recordable in pediatric patients and showed a small but significant improvement with age. Locally and globally, loss of rod sensitivity tended to be larger than loss of cone sensitivity. Conclusions Foveal cones of RDH12-LCA should be targeted with treatments aimed to slow progression, whereas peripapillary rod photoreceptors should be targeted with treatments aimed to improve night vision. Pediatric FST testing may be complicated by age-related maturation of decision making regarding threshold criteria.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katherine E Uyhazi
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yu You Jiang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Emma C Bedoukian
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Robert C Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elizabeth O Shagena
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arlene J Santos
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Leona W Serrano
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kelsey M Parchinski
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mariejel L Weber
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Dorothy A Thompson
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Albert M Maguire
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Drew H Scoles
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Erin C O'Neil
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jessica I W Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Wang J, Wang Y, Li S, Xiao X, Yi Z, Jiang Y, Li X, Jia X, Wang P, Jin C, Sun W, Zhang Q. Clinical and Genetic Analysis of RDH12-Associated Retinopathy in 27 Chinese Families: A Hypomorphic Allele Leads to Cone-Rod Dystrophy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35994252 PMCID: PMC9419460 DOI: 10.1167/iovs.63.9.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the genetic basis of 2 distinct phenotypes associated with biallelic variants in RDH12. Methods Patients with biallelic variants in RDH12 were recruited from our genetic eye clinic. Ocular phenotypes were evaluated. Genotype-phenotype correlations were further clarified using in-house and existing databases. Results In total, 22 biallelic RDH12 variants, including 5 novel variants, were identified in 29 patients from 27 families. Two distinct phenotypes were observed: early-onset and generalized retinal dystrophy with severe impairment of rods and cones in 24 patients (82.8%, 24/29), and late-onset cone-rod dystrophy (CORD) with central macular atrophy in 5 patients from 5 unrelated families (17.2%, 5/29), in which a hypomorphic allele (c.806C>G/p.Ala269Gly) was shared by all 5 patients. During follow-up, patients with late-onset CORD were relatively stable and did not progress to the severe form, which was considered to be an independent manifestation of RDH12-associated retinopathy caused by specific genotypes. Conclusions The hypomorphic allele is responsible for the unique late-onset CORD in 5 families with recessive RDH12-associated retinopathy, in contrast to the well-known severe and generalized retinopathy. Determining the therapeutic value of interventions may depend on understanding the molecular mechanisms underlying manifestation of this hypomorphic variant only in the central macular region, with relative preservation of the peripheral retina.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
3
|
Daich Varela M, Michaelides M. RDH12 retinopathy: clinical features, biology, genetics and future directions. Ophthalmic Genet 2022; 43:1-6. [PMID: 35491887 PMCID: PMC10479312 DOI: 10.1080/13816810.2022.2062392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Retinol dehydrogenase 12 (RDH12) is a small gene located on chromosome 14, encoding an enzyme capable of metabolizing retinoids. It is primarily located in photoreceptor inner segments and thereby is believed to have an important role in clearing excessive retinal and other toxic aldehydes produced by light exposure. Clinical features: RDH12-associated retinopathy has wide phenotypic variability; including early-onset severe retinal dystrophy/Leber Congenital Amaurosis (EOSRD/LCA; most frequent presentation), retinitis pigmentosa, cone-rod dystrophy, and macular dystrophy. It can be inherited in an autosomal recessive and dominant fashion. RDH12-EOSRD/LCA's key features are early visual impairment, petal-shaped, coloboma-like macular atrophy with variegated watercolour-like pattern, peripapillary sparing, and often dense bone spicule pigmentation. Future directions: There is currently no treatment available for RDH12-retinopathy. However, extensive preclinical investigations and an ongoing prospective natural history study are preparing the necessary foundation to design and establish forthcoming clinical trials. Herein, we will concisely review pathophysiology, molecular genetics, clinical features, and discuss therapeutic approaches.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
4
|
Abstract
PURPOSE To characterize the phenotypic variability and report the genetic defects in a cohort of Chinese patients with biallelic variants of the retinol dehydrogenase 12 (RDH12) gene. METHODS The study included 38 patients from 38 unrelated families with biallelic pathogenic RDH12 variants. Systematic next-generation sequencing data analysis, Sanger sequencing validation, and segregation analysis were used to identify the pathogenic mutations. Detailed ophthalmic examinations, including electroretinogram, fundus photography, fundus autofluorescence and optical coherence tomography, and statistical analysis were performed to evaluate phenotype variability. RESULTS Twenty-five different mutations of RDH12 were identified in the 38 families. Six of these variants were novel. Val146Asp was observed at the highest frequency (23.7%), and it was followed by Arg62Ter (14.5%) and Thr49Met (9.2%). Twenty-three probands were diagnosed with early-onset severe retinal dystrophy, 6 with Leber congenital amaurosis, 7 with autosomal recessive retinitis pigmentosa, and 2 with cone-rod dystrophy. Self-reported nyctalopia occurred in about a half of patients (55.3%) and was significantly more common among older patients (P < 0.01). Nyctalopia was not significantly associated with best-corrected visual acuity (P = 0.72), but older patients had significantly greater best-corrected visual acuity loss (P < 0.01). Only 15.8% of the patients had nystagmus, which was significantly more likely to occur among 36.8% of the patients with hyperopia >3D (P < 0.01) and/or in cases of reduced best-corrected visual acuity (P = 0.01), but was not associated with age (P = 0.87). CONCLUSION Several high-frequency RDH12 variants were identified in patients with inherited retinal dystrophies, most of which were missense mutations. Variable but characteristic phenotypes of a progressive nature was observed. Overall, the findings indicated that biallelic RDH12 mutations are a common cause of early-onset retinal dystrophy and a rare cause of cone-rod dystrophy.
Collapse
|
5
|
Scott HA, Place EM, Ferenchak K, Zampaglione E, Wagner NE, Chao KR, DiTroia SP, Navarro-Gomez D, Mukai S, Huckfeldt RM, Pierce EA, Bujakowska KM. Expanding the phenotypic spectrum in RDH12-associated retinal disease. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004754. [PMID: 32014858 PMCID: PMC6996522 DOI: 10.1101/mcs.a004754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Retinol dehydrogenase 12, RDH12, plays a pivotal role in the visual cycle to ensure the maintenance of normal vision. Alterations in activity of this protein result in photoreceptor death and decreased vision beginning at an early age and progressing to substantial vision loss later in life. Here we describe 11 patients with retinal degeneration that underwent next-generation sequencing (NGS) with a targeted panel of all currently known inherited retinal degeneration (IRD) genes and whole-exome sequencing to identify the genetic causality of their retinal disease. These patients display a range of phenotypic severity prompting clinical diagnoses of macular dystrophy, cone-rod dystrophy, retinitis pigmentosa, and early-onset severe retinal dystrophy all attributed to biallelic recessive mutations in RDH12. We report 15 causal alleles and expand the repertoire of known RDH12 mutations with four novel variants: c.215A > G (p.Asp72Gly); c.362T > C (p.Ile121Thr); c.440A > C (p.Asn147Thr); and c.697G > A (p.Val233Ille). The broad phenotypic spectrum observed with biallelic RDH12 mutations has been observed in other genetic forms of IRDs, but the diversity is particularly notable here given the prior association of RDH12 primarily with severe early-onset disease. This breadth emphasizes the importance of broad genetic testing for inherited retinal disorders and extends the pool of individuals who may benefit from imminent gene-targeted therapies.
Collapse
Affiliation(s)
- Hilary A Scott
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Emily M Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Kevin Ferenchak
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Erin Zampaglione
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Naomi E Wagner
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Katherine R Chao
- Center for Mendelian Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Stephanie P DiTroia
- Center for Mendelian Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Daniel Navarro-Gomez
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shizuo Mukai
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
6
|
Hu YS, Song H, Li Y, Xiao ZY, Li T. Whole-exome sequencing identifies novel mutations in genes responsible for retinitis pigmentosa in 2 nonconsanguineous Chinese families. Int J Ophthalmol 2019; 12:915-923. [PMID: 31236346 DOI: 10.18240/ijo.2019.06.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
AIM To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa (RP) in 2 nonconsanguineous Chinese families. METHODS The clinical data, including detailed medical history, best corrected visual acuity (BCVA), slit-lamp biomicroscope examination, fundus photography, optical coherence tomography, static perimetry, and full field electroretinogram, were collected from the members of 2 nonconsanguineous Chinese families preliminarily diagnosed with RP. Genomic DNA was extracted from the probands and other available family members; whole-exome sequencing was conducted with the DNA samples provided by the probands, and all mutations detected by whole-exome sequencing were verified using Sanger sequencing in the probands and the other available family members. The verified novel mutations were further sequenced in 192 ethnicity matched healthy controls. RESULTS The patients from the 2 families exhibited the typical symptoms of RP, including night blindness and progressive constriction of the visual field, and the fundus examinations showed attenuated retinal arterioles, peripheral bone spicule pigment deposits, and waxy optic discs. Whole-exome sequencing revealed a novel nonsense mutation in FAM161A (c.943A>T, p.Lys315*) and compound heterozygous mutations in RP1L1 (c.56C>A, p.Pro19His; c.5470C>T, p.Gln1824*). The nonsense c.5470C>T, p.Gln1824* mutation was novel. All mutations were verified by Sanger sequencing. The mutation p.Lys315* in FAM161A co-segregated with the phenotype, and all the nonsense mutations were absent from the ethnicity matched healthy controls and all available databases. CONCLUSION We identify 2 novel mutations in genes responsible for autosomal recessive RP, and the mutation in FAM161A is reported for the first time in a Chinese population. Our result not only enriches the knowledge of the mutation frequency and spectrum in the genes responsible for nonsyndromic RP but also provides a new target for future gene therapy.
Collapse
Affiliation(s)
- Yan-Shan Hu
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Hui Song
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Yin Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Zi-Yun Xiao
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Tuo Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| |
Collapse
|
7
|
Aleman TS, Uyhazi KE, Serrano LW, Vasireddy V, Bowman SJ, Ammar MJ, Pearson DJ, Maguire AM, Bennett J. RDH12 Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function. Invest Ophthalmol Vis Sci 2019; 59:5225-5236. [PMID: 30372751 DOI: 10.1167/iovs.18-24708] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the retinal phenotype of pediatric patients with mutations in the retinol dehydrogenase 12 (RDH12) gene. Methods Twenty-one patients from 14 families (ages 2-17 years) with RDH12-associated inherited retinal degeneration (RDH12-IRD) underwent a complete ophthalmic exam and imaging with spectral domain optical coherence tomography (SD-OCT) and near infrared and short-wavelength fundus autofluorescence. Visual field extent was measured with Goldmann kinetic perimetry, visual thresholds with dark-adapted static perimetry or with dark-adapted chromatic full-field stimulus testing (FST) and transient pupillometry. Results Visual acuity ranged from 20/40 to light perception. There was parafoveal depigmentation or atrophic maculopathies accompanied by midperipheral intraretinal pigment migration. SD-OCT revealed foveal thinning in all patients and detectable but thinned outer nuclear layer (ONL) at greater eccentricities from the fovea. Photoreceptor outer segment (POS) signals were only detectable in small pockets within the central retina. Measurable kinetic visual fields were limited to small (<5-10°) central islands of vision. Electroretinograms were reported as undetectable or severely reduced in amplitude. FST sensitivities to a 467 nm stimulus were rod-mediated and reduced on average by ∼2.5 log units. A thinned central ONL colocalized with severely reduced to nondetectable cone-mediated sensitivities. Pupillometry confirmed the psychophysically measured abnormalities. Conclusions RDH12-IRD causes an early-onset, retina-wide disease with particularly severe central retinal abnormalities associated with relatively less severe rod photoreceptor dysfunction, a pattern consistent with an early-onset cone-rod dystrophy. Severely abnormal POS but detectable ONL in the pericentral and peripapillary retina suggest these regions may become targets for gene therapy.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katherine E Uyhazi
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Leona W Serrano
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Vidyullatha Vasireddy
- Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott J Bowman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Michael J Ammar
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Denise J Pearson
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Albert M Maguire
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Sahu B, Maeda A. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function. Nutrients 2016; 8:E746. [PMID: 27879662 PMCID: PMC5133129 DOI: 10.3390/nu8110746] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs) are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE) cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| |
Collapse
|