1
|
Fahim AT, Sullivan LS, Bowne SJ, Jones KD, Wheaton DKH, Khan NW, Heckenlively JR, Jayasundera KT, Branham KH, Andrews CA, Othman MI, Karoukis AJ, Birch DG, Daiger SP. X-Chromosome Inactivation Is a Biomarker of Clinical Severity in Female Carriers of RPGR-Associated X-Linked Retinitis Pigmentosa. Ophthalmol Retina 2019; 4:510-520. [PMID: 31953110 DOI: 10.1016/j.oret.2019.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE X-linked retinitis pigmentosa can manifest in female carriers with widely variable severity, whereas others remain unaffected. The contribution of X-chromosome inactivation (XCI) to phenotypic variation has been postulated but not demonstrated. Furthermore, the impact of genotype and genetic modifiers has been demonstrated in affected males but has not been well established in female carriers. The purpose of this study was to describe the scope of clinical phenotype in female carriers with mutations in RPGR and quantify the contribution of genotype, genetic modifiers, and XCI to phenotypic severity. DESIGN Cohort study. PARTICIPANTS Seventy-seven female carriers with RPGR mutations from 41 pedigrees. METHODS Coding single nucleotide polymorphisms were sequenced in candidate genetic modifier genes encoding known RPGR-interacting proteins. X-chromosome inactivation ratios were determined in genomic DNA isolated from blood (n = 42) and saliva (n = 20) using methylation status of X-linked polymorphic repeats. These genetic data were compared with disease severity based on quantitative clinical parameters. MAIN OUTCOME MEASURES Visual acuity, Humphrey visual field (HVF) results, full-field electroretinography results, and dark adaptation. RESULTS Most individuals at all ages were mildly affected or unaffected, whereas those who progressed to moderate or severe vision loss were older than 30 years. RPGR genotype was not associated with clinical severity. The D1264N variant in RPGRIP1L was associated with more severe disease. Skewed XCI toward inactivation of the normal RPGR allele was associated with more severe disease. The XCI ratio in both blood and saliva was a predictor of visual function as measured by HVF diameter, rod amplitude, flicker amplitude, and flicker implicit time. For carriers with extreme XCI skewing of 80:20 or more, 57% were affected severely compared with 8% for those with XCI of less than 80:20 (P = 0.002). CONCLUSIONS Female carriers with mutations in RPGR demonstrate widely variable clinical severity. X-chromosome inactivation ratios correlate with clinical severity and may serve as a predictor of clinically significant disease. Because RPGR gene therapy trials are underway, a future imperative exists to determine which carriers require intervention and when to intervene. X-chromosome inactivation analysis may be useful for identifying candidates for early intervention.
Collapse
Affiliation(s)
- Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan.
| | - Lori S Sullivan
- Department of Genetics, University of Texas Health Science Center, Houston, Texas
| | - Sara J Bowne
- Department of Genetics, University of Texas Health Science Center, Houston, Texas
| | | | | | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kari H Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Chris A Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Mohammad I Othman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Athanasios J Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | | | - Stephen P Daiger
- Department of Genetics, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
2
|
Charng J, Cideciyan AV, Jacobson SG, Sumaroka A, Schwartz SB, Swider M, Roman AJ, Sheplock R, Anand M, Peden MC, Khanna H, Heon E, Wright AF, Swaroop A. Variegated yet non-random rod and cone photoreceptor disease patterns in RPGR-ORF15-associated retinal degeneration. Hum Mol Genet 2016; 25:5444-5459. [PMID: 27798110 PMCID: PMC6078602 DOI: 10.1093/hmg/ddw361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ORF15 exon of the RPGR gene cause a common form of X-linked retinitis pigmentosa, which often results in severe loss of vision. In dogs and mice, gene augmentation therapy has been shown to arrest the progressive degeneration of rod and cone photoreceptors. However, the distribution of potentially treatable photoreceptors across the human retinas and the rate of degeneration are not known. Here, we have defined structural and functional features of the disease in 70 individuals with ORF15 mutations. We also correlated the features observed in patients with those of three Rpgr-mutant (Rpgr-ko, Rd9, and Rpgr-cko) mice. In patients, there was pronounced macular disease. Across the retina, rod and cone dysfunction showed a range of patterns and a spectrum of severity between individuals, but a high symmetry was observed between eyes of each individual. Genotype was not related to disease expression. In the Rpgr-ko mice, there were intra-retinal differences in rhodopsin and cone opsin trafficking. In Rd9 and Rpgr-cko mice, retinal degeneration showed inter-ocular symmetry. Longitudinal results in patients revealed localized rod and cone dysfunction with progression rates of 0.8 to 1.3 log per decade in sensitivity loss. Relatively retained rod and cone photoreceptors in mid- and far-peripheral temporal-inferior and nasal-inferior visual field regions should be good targets for future localized gene therapies in patients.
Collapse
Affiliation(s)
- Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Sharon B. Schwartz
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Manisha Anand
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, USA
| | - Marc C. Peden
- Retina Associates of Florida, Tampa, Florida, FL, USA
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, Scotland, UK
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, MD, USA
| |
Collapse
|
3
|
Beltran WA, Cideciyan AV, Lewin AS, Hauswirth WW, Jacobson SG, Aguirre GD. Gene augmentation for X-linked retinitis pigmentosa caused by mutations in RPGR. Cold Spring Harb Perspect Med 2014; 5:a017392. [PMID: 25301933 DOI: 10.1101/cshperspect.a017392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is a severe and early onset form of retinal degeneration, and no treatment is currently available. Recent evidence in two clinically relevant canine models shows that adeno-associated viral (AAV)-mediated RPGR gene transfer to rods and cones can prevent disease onset and rescue photoreceptors at early- and mid-stages of degeneration. There is thus a strong incentive for conducting long-term, preclinical efficacy and safety studies, while concomitantly pursuing the detailed phenotypic characterization of XLRP disease in patients that may benefit from such corrective therapy.
Collapse
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida 32610
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gustavo D Aguirre
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
4
|
Carozzo S, Martinoli C, Sannita WG. Miscoded Visual Processing in Degenerative Retinal Disorder? J PSYCHOPHYSIOL 2014. [DOI: 10.1027/0269-8803/a000110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Standard electrophysiological procedures for visual testing were applied to record the retinal and cortical electrophysiological responses to contrast stimulation from 35 subjects with unambiguously diagnosed retinitis pigmentosa and severe impairment of visual acuity and field. Stimuli (central 9° of visual field) were sinusoidal bars with spatial frequencies of 0.6–1.2 cycle/degree and 1.3–5.0 cycle/degree for the retinal (pattern-ERG) and cortical (pattern-VEP) responses, respectively; contrast was 80%; reversal at 2.13 Hz. Structured pattern-ERG above noise level was recorded from 29 subjects at 0.6 cycle/degree and from 24 subjects at 1.2 cycle/degree; latencies were increased and amplitude reduced. Pattern-VEP responses above noise level, with increased latencies and reduced amplitude, were observed in 92% of subjects with unilateral and in all subjects with bilateral retinal response. Both responses were phase-locked to stimulus. No correlation with the residual visual acuity or field was detected. The observation is consistent with evidence of the disease sparing the neuroretina and with unconscious visual processing and suggests miscoding of visual information processing.
Collapse
Affiliation(s)
- Simone Carozzo
- Department of Neuroscience, Ophthalmology and Genetics, University of Genova, Italy
| | - Cristina Martinoli
- The David Chiossone Institute for the Blind and Visually Disabled, Genova, Italy
| | - Walter G. Sannita
- Department of Neuroscience, Ophthalmology and Genetics, University of Genova, Italy
- The David Chiossone Institute for the Blind and Visually Disabled, Genova, Italy
- Department of Psychiatry, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
5
|
Yang L, Yin X, Feng L, You D, Wu L, Chen N, Li A, Li G, Ma Z. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. PLoS One 2014; 9:e85752. [PMID: 24454928 PMCID: PMC3893273 DOI: 10.1371/journal.pone.0085752] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022] Open
Abstract
X-linked Retinitis Pigmentosa (XLRP) accounts for 10–20% of all RP cases, and represents the most severe subtype of this disease. Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene are the most common causes of XLRP, accounting for over 70–75% of all XLRP cases. In this work, we analyzed all the exons of RPGR gene with Sanger sequencing in seven Chinese XLRP families, two of these with a provisional diagnosis of adRP but without male-to-male transmission. Three novel deletions (c.2233_34delAG; c.2236_37delGA and c.2403_04delAG) and two known nonsense mutations (c.851C→G and c.2260G→T) were identified in five families. Two novel deletions (c.2233_34delAG and c.2236_37delGA) resulted in the same frame shift (p.E746RfsX22), created similar phenotype in Family 3 and 4. The novel deletion (c.2403_04delAG; p.E802GfsX31) resulted in both XLRP and x-linked cone-rod dystrophy within the male patients of family 5, which suggested the presence of either genetic or environmental modifiers, or both, play a substantial role in disease expression. Genotype-phenotype correlation analysis suggested that (1) both patients and female carriers with mutation in Exon 8 (Family 1) manifest more severe disease than did those with ORF15 mutations (Family 2&3&4); (2) mutation close to downstream of ORF15 (Family 5) demonstrate the early preferential loss of cone function with moderate loss of rod function.
Collapse
Affiliation(s)
- Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Xiaobei Yin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Lina Feng
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Debo You
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Lemeng Wu
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Ningning Chen
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Aijun Li
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
- * E-mail: (GL); (ZM)
| | - Zhizhong Ma
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
- * E-mail: (GL); (ZM)
| |
Collapse
|
6
|
Chizzolini M, Galan A, Milan E, Sebastiani A, Costagliola C, Parmeggiani F. Good epidemiologic practice in retinitis pigmentosa: from phenotyping to biobanking. Curr Genomics 2012; 12:260-6. [PMID: 22131871 PMCID: PMC3131733 DOI: 10.2174/138920211795860071] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 04/12/2011] [Accepted: 04/30/2011] [Indexed: 01/07/2023] Open
Abstract
Inherited retinal dystrophies, such as retinitis pigmentosa (RP), include a group of relatively rare hereditary diseases caused by mutations in genes that code for proteins involved in the maintenance and function of the photoreceptor cells (cones and rods). The different forms of RP consist of progressive neurodegenerative disorders which are generally related to various and severe limitations of visual performances. In the course of typical RP (rod-cone dystrophy), the affected individuals first experience night-blindness and/or visual field constriction (secondary to rod dysfunctions), followed by variable alterations of the central vision (due to cone damages). On the other hand, during the atypical form of RP (cone-rod dystrophy), the cone’s functionalities are prevalently disrupted in comparison with the rod’s ones. The basic diagnosis of RP relies upon the documentation of unremitting loss in photoreceptor activity by electroretinogram and/or visual field testing. The prevalence of all RP typologies is variably reported in about one case for each 3000-5000 individuals, with a total of about two millions of affected persons worldwide. The inherited retinal dystrophies are sometimes the epiphenomenon of a complex framework (syndromic RP), but more often they represent an isolated disorder (about 85-90 % of cases). Although 200 causative RP mutations have been hitherto detected in more than 100 different genes, the molecular defect is identifiable in just about the 50% of the analyzed patients with RP. Not only the RP genotypes are very heterogeneous, but also the patients with the same mutation can be affected by different phenotypic manifestations. RP can be inherited as autosomal dominant, autosomal recessive or X-linked trait, and many sporadic forms are diagnosed in patients with no affected relatives. Dissecting the clinico-genetic complexity of RP has become an attainable objective by means of large-scale research projects, in which the collaboration between ophthalmologists, geneticists, and epidemiologists becomes a crucial aspect. In the present review, the main issues regarding clinical phenotyping and epidemiologic criticisms of RP are focused, especially highlighting the importance of both standardization of the diagnostic protocols and appropriateness of the disease’s registration systems.
Collapse
Affiliation(s)
- Marzio Chizzolini
- Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, ULSS 15 Alta Padovana, Camposampiero, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Fahim AT, Bowne SJ, Sullivan LS, Webb KD, Williams JT, Wheaton DK, Birch DG, Daiger SP. Polymorphic variation of RPGRIP1L and IQCB1 as modifiers of X-linked retinitis pigmentosa caused by mutations in RPGR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:313-20. [PMID: 22183348 DOI: 10.1007/978-1-4614-0631-0_41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abigail T Fahim
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS One 2011; 6:e23021. [PMID: 21857984 PMCID: PMC3155520 DOI: 10.1371/journal.pone.0023021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/07/2011] [Indexed: 11/23/2022] Open
Abstract
Mutations in RPGR account for over 70% of X-linked retinitis pigmentosa (XlRP), characterized by retinal degeneration and eventual blindness. The clinical consequences of RPGR mutations are highly varied, even among individuals with the same mutation: males demonstrate a wide range of clinical severity, and female carriers may or may not be affected. This study describes the phenotypic diversity in a cohort of 98 affected males from 56 families with RPGR mutations, and demonstrates the contribution of genetic factors (i.e., allelic heterogeneity and genetic modifiers) to this diversity. Patients were categorized as grade 1 (mild), 2 (moderate) or 3 (severe) according to specific clinical criteria. Patient DNAs were genotyped for coding SNPs in 4 candidate modifier genes with products known to interact with RPGR protein: RPGRIP1, RPGRIP1L, CEP290, and IQCB1. Family-based association testing was performed using PLINK. A wide range of clinical severity was observed both between and within families. Patients with mutations in exons 1–14 were more severely affected than those with ORF15 mutations, and patients with predicted null alleles were more severely affected than those predicted to make RPGR protein. Two SNPs showed association with severe disease: the minor allele (N) of I393N in IQCB1 (p = 0.044) and the common allele (R) of R744Q in RPGRIP1L (p = 0.049). These data demonstrate that allelic heterogeneity contributes to phenotypic diversity in XlRP and suggest that this may depend on the presence or absence of RPGR protein. In addition, common variants in 2 proteins known to interact with RPGR are associated with severe disease in this cohort.
Collapse
|
9
|
Mears AJ, Hiriyanna S, Vervoort R, Yashar B, Gieser L, Fahrner S, Daiger SP, Heckenlively JR, Sieving PA, Wright AF, Swaroop A. Remapping of the RP15 locus for X-linked cone-rod degeneration to Xp11.4-p21.1, and identification of a de novo insertion in the RPGR exon ORF15. Am J Hum Genet 2000; 67:1000-3. [PMID: 10970770 PMCID: PMC1287869 DOI: 10.1086/303091] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Accepted: 08/14/2000] [Indexed: 01/11/2023] Open
Abstract
X-linked forms of retinitis pigmentosa (XLRP) are among the most severe, because of their early onset, often leading to significant vision loss before the 4th decade. Previously, the RP15 locus was assigned to Xp22, by linkage analysis of a single pedigree with "X-linked dominant cone-rod degeneration." After clinical reevaluation of a female in this pedigree identified her as affected, we remapped the disease to a 19.5-cM interval (DXS1219-DXS993) at Xp11.4-p21.1. This new interval overlapped both RP3 (RPGR) and COD1. Sequencing of the previously published exons of RPGR revealed no mutations, but a de novo insertion was detected in the new RPGR exon, ORF15. The identification of an RPGR mutation in a family with a severe form of cone and rod degeneration suggests that RPGR mutations may encompass a broader phenotypic spectrum than has previously been recognized in "typical" retinitis pigmentosa.
Collapse
Affiliation(s)
- Alan J. Mears
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Suja Hiriyanna
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Raf Vervoort
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Beverly Yashar
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Linn Gieser
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Stacey Fahrner
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Stephen P. Daiger
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - John R. Heckenlively
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Paul A. Sieving
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Alan F. Wright
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| | - Anand Swaroop
- Departments of Ophthalmology and Visual Sciences and Human Genetics, University of Michigan, Ann Arbor; MRC Human Genetics Unit, Western General Hospital, Edinburgh; Department of Ophthalmology and Visual Science, University of Texas–Houston Health Science Center, Houston; and Jules Stein Eye Institute, University of California, Los Angeles
| |
Collapse
|