1
|
Munnangi SR, Youssef AAA, Narala N, Lakkala P, Narala S, Vemula SK, Repka M. Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharm Res 2023; 40:1519-1540. [PMID: 37138135 PMCID: PMC10156076 DOI: 10.1007/s11095-023-03517-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Despite numerous research efforts, drug delivery through the oral route remains a major challenge to formulation scientists. The oral delivery of drugs poses a significant challenge because more than 40% of new chemical entities are practically insoluble in water. Low aqueous solubility is the main problem encountered during the formulation development of new actives and for generic development. A complexation approach has been widely investigated to address this issue, which subsequently improves the bioavailability of these drugs. This review discusses the various types of complexes such as metal complex (drug-metal ion), organic molecules (drug-caffeine or drug-hydrophilic polymer), inclusion complex (drug-cyclodextrin), and pharmacosomes (drug-phospholipids) that improves the aqueous solubility, dissolution, and permeability of the drug along with the numerous case studies reported in the literature. Besides improving solubility, drug-complexation provides versatile functions like improving stability, reducing the toxicity of drugs, increasing or decreasing the dissolution rate, and enhancing bioavailability and biodistribution. Apart, various methods to predict the stoichiometric ratio of reactants and the stability of the developed complex are discussed.
Collapse
Affiliation(s)
- Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, MS, 38677, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, MS, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, MS, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, MS, 38677, USA.
| |
Collapse
|
2
|
Tekade AR, Yadav JN. A Review on Solid Dispersion and Carriers Used Therein for Solubility Enhancement of Poorly Water Soluble Drugs. Adv Pharm Bull 2020; 10:359-369. [PMID: 32665894 PMCID: PMC7335980 DOI: 10.34172/apb.2020.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
A large number of hydrophilic and hydrophobic carriers in pharmaceutical excipients are available today which are used for formulation of solid dispersions. Depending on nature of carriers the immediate release solid dispersions and/or controlled release solid dispersions can be formulated. Initially crystalline carriers were used which are transformed into amorphous solid dispersions with enhanced properties. The carriers used previously were mostly synthetic one. Recent trend towards the use of natural carriers have replaced the use of synthetic carriers. This review is the overview of various synthetic, natural, semisynthetic, modified natural hydrophilic carriers used for formulation of solid dispersions.
Collapse
Affiliation(s)
- Avinash Ramrao Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra- 411033, India
| | - Jyoti Narayan Yadav
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra- 411033, India
| |
Collapse
|
3
|
Butt S, Hasan SMF, Hassan MM, Alkharfy KM, Neau SH. Directly compressed rosuvastatin calcium tablets that offer hydrotropic and micellar solubilization for improved dissolution rate and extent of drug release. Saudi Pharm J 2019; 27:619-628. [PMID: 31297015 PMCID: PMC6598454 DOI: 10.1016/j.jsps.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
The objective was to use caffeine and Soluplus® to improve the dissolution rate and to maintain a concentration of BCS Class II rosuvastatin calcium that exceeds its solubility. Caffeine and Soluplus® together substantially improved the dissolution rate and the extent of rosuvastatin release. Formulations for direct compression tablets included Formulation F1, a control with drug but with neither caffeine nor Soluplus® present; F2 with drug-caffeine complex; F3 with drug and Soluplus® and F4 with drug-caffeine complex and Soluplus®. Each formulation blend provided satisfactory flow properties. Tablets were comparable in mass, hardness and friability. A marked decrease in disintegration time occurred when the hydrotropic or micellar agent was included in the formulation. Assay (98–100%) and content uniformity (99–100%) results met requirements. Release studies in pH 1.2, 6.6, and 6.8 buffers revealed the superiority of F4. At 45 min sampling time, F3 and F4 tablets each provided a cumulative drug release greater than 70% in each medium. F2 tablets exhibited compliance to official standards in pH 6.6 and 6.8 buffers but not in pH 1.2 buffer, whereas tablets based on F1 failed in each medium. Two-factor ANOVA of the release data revealed a statistical difference across the four formulations in each release medium. Pairwise comparison of release profiles demonstrated that, of the four formulations, F4 provided the most effectively enhanced dissolution rate, improvement to the extent of drug release and support of a concentration higher than the solubility of rosuvastatin calcium.
Collapse
Affiliation(s)
- Sharonia Butt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Pakistan
| | - Syed Muhammad Farid Hasan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Pakistan
| | | | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Steven Henry Neau
- Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
4
|
Tyliszczak B, Kudłacik-Kramarczyk S, Drabczyk A, Bogucki R, Olejnik E, Kinasiewicz J, Głąb M. Hydrogels containing caffeine and based on Beetosan® – proecological chitosan – preparation, characterization, and in vitro cytotoxicity. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bożena Tyliszczak
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Cracow, Poland
| | | | - Anna Drabczyk
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Rafał Bogucki
- Institute of Material Engineering, Cracow University of Technology, Cracow, Poland
| | - Ewa Olejnik
- Faculty of Foundry Engineering, AGH University of Science and Technology in Kraków, Cracow, Poland
| | - Joanna Kinasiewicz
- Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
| | - Magdalena Głąb
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
6
|
Shakeel F, Shafiq S, Haq N, Alanazi FK, Alsarra IA. Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert Opin Drug Deliv 2012; 9:953-74. [PMID: 22703228 DOI: 10.1517/17425247.2012.696605] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|