1
|
Oracz J, Kowalski S, Żyżelewicz D, Kowalska G, Gumul D, Kulbat-Warycha K, Rosicka-Kaczmarek J, Brzozowska A, Grzegorczyk A, Areczuk A. The Influence of Microwave-Assisted Extraction on the Phenolic Compound Profile and Biological Activities of Extracts from Selected Scutellaria Species. Molecules 2023; 28:molecules28093877. [PMID: 37175287 PMCID: PMC10180449 DOI: 10.3390/molecules28093877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of the study was to investigate the effects of microwave-assisted extraction (MAE) conditions (microwave power, extraction time, and ethanol concentration) on the efficiency of the extraction of phenolic compounds from selected plant species belonging to the genus Scutellaria (i.e., Scutellaria baicalensis and Scutellaria lateriflora). The extracts from selected Scutellaria species were examined to establish the total phenolic content and the in vitro antioxidant and anti-inflammatory activity. The antioxidant capacity was determined by the ferric reducing antioxidant power (FRAP) and 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity methods. The anti-inflammatory activity was evaluated through the lipoxygenase (LOX) inhibitory assay. The phenolic profile of the extracts was characterized using ultra-high performance liquid chromatography coupled with diode array detection and high-resolution electrospray ionization mass spectrometry (UHPLC-DAD/ESI-HRMS/MS). Depending on the type of solvent and the extraction conditions used, the extracts obtained from selected Scutellaria species showed different total and individual phenolic content, as well as different antioxidant and anti-inflammatory properties. The results showed that all Scutellaria extracts had high total phenolic content and exhibited strong ferric ion reducing power and free radical scavenging capacity and a significant ability to inhibit the LOX activity. In general, the 70% ethanol extracts contained more phenolic compounds, mainly flavones, flavanones, and their derivatives, and showed greater in vitro biological activity than other extracts. The highest levels of phenolic compounds and the strongest antioxidant and anti-inflammatory potential were found in extracts from the roots of S. baicalensis. Optimal extraction conditions for all the plant materials tested were determined as the microwave power of 63 W, extraction time of 10 min, and 70% ethanol as the solvent.
Collapse
Affiliation(s)
- Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Stanisław Kowalski
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Gabriela Kowalska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland
| | - Kamila Kulbat-Warycha
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Anna Brzozowska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Aleksandra Grzegorczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Anna Areczuk
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland
| |
Collapse
|
2
|
Noreldeen HAA, Huang KY, Wu GW, Zhang Q, Peng HP, Deng HH, Chen W. Feature Selection Assists BLSTM for the Ultrasensitive Detection of Bioflavonoids in Different Biological Matrices Based on the 3D Fluorescence Spectra of Gold Nanoclusters. Anal Chem 2022; 94:17533-17540. [PMID: 36473730 DOI: 10.1021/acs.analchem.2c03814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations. The optimized model achieves excellent overall accuracy (98-100%) in the qualitative analysis of the selected bioflavonoids. Next, the optimized model was transferred to quantify the selected bioflavonoids in serum at nanoscale concentrations. The transferred model achieved excellent accuracy, and the overall determination coefficient (R2) value range was 99-100%. Furthermore, the optimized model achieved excellent accuracies in other applications, including multiplex detection in serum and model applicability in urine. Also, LOD in serum at nanoscale concentration was considered. Therefore, this approach opens the window for qualitative and quantitative analysis of small molecules in biofluids at nanoscale concentrations, which may help in the rapid inclusion of sensor arrays in biomedical and other applications.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,National Institute of Oceanography and Fisheries, NIOF, Cairo 4262110, Egypt
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
3
|
Yun C, Wang S, Gao Y, Zhao Z, Miao N, Shi Y, Ri I, Wang W, Wang H. Optimization of ultrasound-assisted enzymatic pretreatment for enhanced extraction of baicalein and wogonin from Scutellaria baicalensis roots. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123077. [PMID: 34894479 DOI: 10.1016/j.jchromb.2021.123077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023]
Abstract
It is of great theoretical interest and industrial significance to improve the extraction efficiency of baicalein and wogonin from Scutellaria baicalensis roots because of their high pharmacological activities. The present study was aimed to establish the optimized ultrasound-assisted enzymatic pretreatment (UAEP) process by which ultrasound irradiation and the exogenous enzyme were simultaneously applied to efficiently transform baicalin and wogonoside into baicalein and wogonin, enhancing their extraction efficiency. Single-factor experiment and Box-Behnken design were used to optimize the main UAEP conditions to maximize the total extraction yield of baicalein and wogonin. The optimized UAEP conditions were cellulase concentration of 1.1%, pH of 5.5, UAEP temperature of 56.5 °C, UAEP time of 39.4 min, and ultrasonic power of 200 W with the total extraction yield of 82.51 ± 0.85 mg/g DW. The comparison of the established technique with the reference method based on the enzymatic pretreatment revealed that the productive efficiency was significantly improved with the transformation rates nearly doubled. These results suggest that the optimized UAEP process has the potential to be applied for the green, simple, and efficient extraction of baicalein and wogonin in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Forest Science, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea
| | - Shengfang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yuan Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhuowen Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Na Miao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yutong Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ilbong Ri
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Life Science, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea
| | - Wenjie Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Huimei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Ansari A, Bose S, Lim SK, Wang JH, Choi YH, Kim H. Combination of Scutellaria baicalensis and Metformin Ameliorates Diet-Induced Metabolic Dysregulation in Mice via the Gut-Liver-Brain Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1409-1433. [PMID: 32907360 DOI: 10.1142/s0192415x2050069x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Scutellaria baicalensis (SB), a herbal medicine, is commonly used to treat metabolic diseases, while Metformin (MF) is a widely used drug for type 2 diabetes. The purpose of this study was to investigate whether co-treatment of SB with MF could produce a potential therapeutic effect on high-fat and high-fructose diet (HFFD)-induced metabolic dysregulation. First, we optimized the dose of SB (100, 200, 400, and 800[Formula: see text]mg/kg) with MF (200[Formula: see text]mg/kg) in HFFD-induced C57BL6J mice. Next, the optimized dose of SB (400[Formula: see text]mg/kg) was co-administered with MF (50, 100, and 200[Formula: see text]mg/kg) in a similar animal model to find the effective combinations of SB and MF. Metabolic markers were determined in serum and tissues using different assays, histology, gene expression, and gut microbial population. The SB and MF co-treatment significantly decreased the body, liver, and VAT weights. The outcome of OGTT was improved, and the fasting insulin, HbA1c, TG, TC, LDL-c, AST, and ALT were decreased, while HDL-c was significantly increased. Histological analyses revealed maintained the integrity of liver, adipose tissue, and intestine prevented lipid accumulation in the liver and intestine and combated neuronal damage in the brain. Importantly, controlled the expression of PPAR[Formula: see text], and IL-6 genes in the liver, and expression of BDNF, Glut1, Glut3, and Glut4 genes in the brain. Treatment-specific gut microbial segregation was observed in the PCA chart. Our findings indicate that SB and MF co-treatment is an effective therapeutic approach for HFFD-induced metabolic dysregulation which is operated through the gut-liver-brain axis.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Shambhunath Bose
- NosQuest Inc., USPACE 1A-1103, Daewang Pangyo-ro 660, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Jing-Hua Wang
- Daejeon University, College of Korean Medicine, Department of Immunology, Institute of Bioscience and Integrative Medicine, Daejeon, Republic of Korea
| | - Young-Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, Goyang, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| |
Collapse
|
5
|
Zhang C, Li N, Niu F. Baicalein triazole prevents respiratory tract infection by RSV through suppression of oxidative damage. Microb Pathog 2019; 131:227-233. [DOI: 10.1016/j.micpath.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
|
6
|
Wang Q, Song W, Qiao X, Ji S, Kuang Y, Zhang ZX, Bo T, Guo DA, Ye M. Simultaneous quantification of 50 bioactive compounds of the traditional Chinese medicine formula Gegen-Qinlian decoction using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2016; 1454:15-25. [DOI: 10.1016/j.chroma.2016.05.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022]
|
7
|
Qi S, Wu-Lin C, Hua J, Ai-Hua Z, Xiang-Cai M. H2O2 Improves Quality of Radix scutellariae Through Anti-oxidant Effect. Pharmacogn Mag 2016; 12:84-90. [PMID: 27019566 PMCID: PMC4787343 DOI: 10.4103/0973-1296.176063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction: The correlation between the quality and geographical origin of herbal medicine was traced back to Tang Dynasty in China, more than 1200 years, and the effects of ecological environments on the secondary metabolites such as flavonoids have been confirmed. However, little is known about how the adversity impacts on the quality. Reactive oxygen species (ROS) may be medium between the ecological environment and the secondary metabolism. Materials and Methods: The fresh roots of Scutellaria baicalensis Georgi were treated with 0.002 μmol/L, 0.2 μmol/L, and 20 μmol/L H2O2, respectively. A stress model was established to elucidate the change of secondary metabolism, anti-oxidant enzyme system, and enzymes relating to flavonoids. Results: The activities of superoxide dismutase, catalase and peroxidase decreased. Too much H2O2, firstly, boosted transformation of flavonoids glycoside into aglucon with the most remarkable activities through UDP-glucuronate baicalein 7-O-glucuronosyltransferase (UBGAT), and β-glucuronidase (GUS), then regulated the gene expression of phenylalanine ammonialyase, GUS, and UBGAT, and increased the contents of flavones, motivated the flavonoid glycoside converting into aglucon. With this action, the flavones displaced the anti-oxidant enzymes. The higher the dosage, the more baicalein and wogonin increased, the later they took action. Conclusion: The plant secondary metabolites to keep ROS constant are identical to the effective materials in clinic. They are closely linked. H2O2 can improve flavones, especially the aglucon, and further increased the quality of herbal medicine, which possesses very important value in medical practice. SUMMARY H2O2 decreasing the activities of CAT and POD lead to accumulation of more H2O2. Excess of H2O2 up-regulated PAL, BUG, promote biosynthesis of flavones, and enhance the nonenzyme system. “↑” and “↓” represent activity or content “up” and “down” respectively.
Collapse
Affiliation(s)
- Song Qi
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Cao Wu-Lin
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiang Hua
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhang Ai-Hua
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Meng Xiang-Cai
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
8
|
Wang W, Lin P, Ma L, Xu K, Lin X. Separation and determination of flavonoids in three traditional chinese medicines by capillary electrophoresis with amperometric detection. J Sep Sci 2016; 39:1357-62. [PMID: 26829244 DOI: 10.1002/jssc.201501287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Flavonoids are important active ingredients in many traditional Chinese medicines. In this paper, capillary electrophoresis with amperometric detection was employed to separate and detect eight flavonoids, rutin, quercetrin, quercetin, kaempferol, kaempferide, catechin, apigenin, and luteolin, in a home-made capillary electrophoresis device. Under the separation voltage of 2000 V, the eight flavonoids could be completely separated within 33 min in 18 mM borax running buffer at pH 10.2. Good linear relationships were obtained for all analytes and the detection limits for flavonoids ranged from 0.46 to 0.85 μM. Then, the method was applied to separate and determine the flavonoids in three traditional Chinese medicines, hippophae rhamnoides, hypericum perforatum, and cacumen platycladi. Finally, rutin, kaempferol, quercetin, and quercetrin were discovered in these medicines and the concentrations ranged from 0.28 to 9.94 mg/g. The recoveries of flavonoids ranged from 84.7 to 113%, which showed the high reliability of this method.
Collapse
Affiliation(s)
- Wei Wang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ping Lin
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Lihong Ma
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Kaixuan Xu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiuli Lin
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
9
|
Wang CZ, Zhang CF, Chen L, Anderson S, Lu F, Yuan CS. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin. Int J Oncol 2015; 47:1749-58. [PMID: 26398706 PMCID: PMC4599184 DOI: 10.3892/ijo.2015.3173] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Feng Zhang
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Lina Chen
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Samantha Anderson
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Fang Lu
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Baicalein induces apoptosis and autophagy via endoplasmic reticulum stress in hepatocellular carcinoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:732516. [PMID: 24995326 PMCID: PMC4065687 DOI: 10.1155/2014/732516] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a disastrous disease and the treatment for HCC is rather limited. Separation and identification of active compounds from traditionally used herbs in HCC treatment may shed light on novel therapeutic drugs for HCC. METHODS Cell viability and colony forming assay were conducted to determine anti-HCC activity. Morphology of cells and activity of caspases were analyzed. Antiapoptotic Bcl-2 family proteins and JNK were also examined. Levels of unfolded protein response (UPR) markers were determined and intracellular calcium was assayed. Small interfering RNAs (siRNAs) were used to investigate the role of UPR and autophagy in baicalein-induced cell death. RESULTS Among four studied flavonoids, only baicalein exhibited satisfactory inhibition of viability and colony formation of HCC cells within water-soluble concentration. Baicalein induced apoptosis via endoplasmic reticulum (ER) stress, possibly by downregulating prosurvival Bcl-2 family, increasing intracellular calcium, and activating JNK. CHOP was the executor of cell death during baicalein-induced ER stress while eIF2 α and IRE1 α played protective roles. Protective autophagy was also triggered by baicalein in HCC cells. CONCLUSION Baicalein exhibits prominent anti-HCC activity. This flavonoid induces apoptosis and protective autophagy via ER stress. Combination of baicalein and autophagy inhibitors may represent a promising therapy against HCC.
Collapse
|
11
|
NMDA receptor-mediated neuroprotective effect of the Scutellaria baicalensis Georgi extract on the excitotoxic neuronal cell death in primary rat cortical cell cultures. ScientificWorldJournal 2014; 2014:459549. [PMID: 24967436 PMCID: PMC4055394 DOI: 10.1155/2014/459549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/04/2014] [Indexed: 01/09/2023] Open
Abstract
The objective of the current research work was to evaluate the neuroprotective effect of the ethanol extract of Scutellaria baicalensis (S.B.) on the excitotoxic neuronal cell death in primary rat cortical cell cultures. The inhibitory effects of the extract were qualitatively and quantitatively estimated by phase-contrast microscopy and lactate dehydrogenase (LDH) assays. The extract exhibited a potent and dose-dependent inhibition of the glutamate-induced excitotoxicity in the culture media. Further, using radioligand binding assays, it was observed that the inhibitory effect of the extract was more potent and selective for the N-methyl-D-aspartate (NMDA) receptor-mediated toxicity. The S.B. ethanol extract competed with [3H] MDL 105,519 for the specific binding to the NMDA receptor glycine site with 50% inhibition occurring at 35.1 μg/mL. Further, NMDA receptor inactivation by the S.B. ethanol extract was concluded from the decreasing binding capability of [3H]MK-801 in the presence of the extract. Thus, S.B. extract exhibited neuroprotection against excitotoxic cell death, and this neuroprotection was mediated through the inhibition of NMDA receptor function by interacting with the glycine binding site of the NMDA receptor. Phytochemical analysis of the bioactive extract revealed the presence of six phytochemical constituents including baicalein, baicalin, wogonin, wogonoside, scutellarin, and Oroxylin A.
Collapse
|