1
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
2
|
ROS-Induced DNA-Damage and Autophagy in Oral Squamous Cell Carcinoma by Usnea barbata Oil Extract-An In Vitro Study. Int J Mol Sci 2022; 23:ijms232314836. [PMID: 36499160 PMCID: PMC9738295 DOI: 10.3390/ijms232314836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress is associated with aging, cancers, and numerous metabolic and chronic disorders, and phenolic compounds are well known for their health-promoting role due to their free-radical scavenging activity. These phytochemicals could also exhibit pro-oxidant effects. Due to its bioactive phenolic secondary metabolites, Usnea barbata (L.) Weber ex. F.H. Wigg (U. barbata) displays anticancer and antioxidant activities and has been used as a phytomedicine for thousands of years. The present work aims to analyze the properties of U. barbata extract in canola oil (UBO). The UBO cytotoxicity on oral squamous cell carcinoma (OSCC) CLS-354 cell line and blood cell cultures was explored through complex flow cytometry analyses regarding apoptosis, reactive oxygen species (ROS) levels, the enzymatic activity of caspase 3/7, cell cycle, nuclear shrinkage (NS), autophagy (A), and synthesis of deoxyribonucleic acid (DNA). All these studies were concomitantly performed on canola oil (CNO) to evidence the interaction of lichen metabolites with the constituents of this green solvent used for extraction. The obtained data evidenced that UBO inhibited CLS-354 oral cancer cell proliferation through ROS generation (316.67 × 104), determining higher levels of nuclear shrinkage (40.12%), cell cycle arrest in G0/G1 (92.51%; G0 is the differentiation phase, while during G1 phase occurs preparation for cell division), DNA fragmentation (2.97%), and autophagy (62.98%) than in blood cells. At a substantially higher ROS level in blood cells (5250.00 × 104), the processes that lead to cell death-NS (30.05%), cell cycle arrest in G0/G1 (86.30%), DNA fragmentation (0.72%), and autophagy (39.37%)-are considerably lower than in CLS-354 oral cancer cells. Our work reveals the ROS-mediated anticancer potential of UBO through DNA damage and autophagy. Moreover, the present study suggests that UBO pharmacological potential could result from the synergism between lichen secondary metabolites and canola oil phytoconstituents.
Collapse
|
3
|
Adenubi OT, Famuyide IM, McGaw LJ, Eloff JN. Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115657. [PMID: 36007717 DOI: 10.1016/j.jep.2022.115657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lichens, a unique symbiotic association between an alga/cyanobacterium and a fungus, produce secondary metabolites that are a promising source of novel drug leads. The beauty and importance of lichens have not been adequately explored despite their manifold biological activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, analgesic, antipyretic and antiparasitic. AIM OF THE STUDY The present review collates and discusses the available knowledge on secondary metabolites and biological activities of lichens (in vitro and in vivo). MATERIALS AND METHODS Using relevant keywords (lichens, secondary metabolites, bioactivity, pharmacological activities), five electronic databases, namely ScienceDirect, PubMed, Google Scholar, Scopus and Recent Literature on Lichens, were searched for past and current scientific contributions up until May 2022. Literature focusing broadly on the bioactivity of lichens including their secondary metabolites were identified and summarized. RESULTS A total of 50 review articles and 189 research articles were searched. Information related to antioxidant, antimicrobial, anti-inflammatory, anticancer and insecticidal activities of 90 lichen species (from 13 families) and 12 isolated metabolites are reported. Over 90% of the studies comprised in vitro investigations, such as bioassays evaluating radical scavenging properties, lipid peroxidation inhibition and reducing power, cytotoxicity and antimicrobial bioassays of lichen species and constituents. In vivo studies were scarce and available only in fish and rats. Most of the studies were done by research groups in Brazil, France, Serbia, India and Turkey. There were relatively few reports from Asia and Africa despite the ubiquitous nature of lichens and the high occurrence in these continents. CONCLUSION Secondary metabolites from lichens are worthy of further investigation in terms of their potential therapeutic applicability, including better understanding of their mechanism(s) of action. This would be of great importance in the search for novel drugs.
Collapse
Affiliation(s)
- Olubukola Tolulope Adenubi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | - Ibukun Michael Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Jacobus Nicolaas Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
4
|
|
5
|
Popovici V, Bucur L, Calcan SI, Cucolea EI, Costache T, Rambu D, Schröder V, Gîrd CE, Gherghel D, Vochita G, Caraiane A, Badea V. Elemental Analysis and In Vitro Evaluation of Antibacterial and Antifungal Activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010032. [PMID: 35009036 PMCID: PMC8747648 DOI: 10.3390/plants11010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 05/02/2023]
Abstract
This study aims to complete our research on Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from the Călimani Mountains, Romania, with an elemental analysis and to explore its antibacterial and antifungal potential. Thus, we analyzed twenty-three metals (Ca, Fe, Mg, Mn, Zn, Al, Ag, Ba, Co, Cr, Cu, Li, Ni, Tl, V, Mo, Pd, Pt, Sb, As, Pb, Cd, and Hg) in dried U. barbata lichen (dUB) by inductively coupled plasma mass spectrometry (ICP-MS). For the second study, we performed dried lichen extraction with five different solvents (ethyl acetate, acetone, ethanol, methanol, and water), obtaining five U. barbata dry extracts (UBDE). Then, using an adapted disc diffusion method (DDM), we examined their antimicrobial activity against seven bacterial species-four Gram-positive (Staphylococcus aureus, Enterococcus casseliflavus, Streptococcus pyogenes, and Streptococcus pneumoniae) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa)-and two fungi species (Candida albicans and Candida parapsilosis). Usnic acid (UA) was used as a positive control. The ICP-MS data showed a considerable Ca content (979.766 µg/g), followed by, in decreasing order, Mg, Mn, Al, Fe, and Zn. Other elements had low levels: Ba, Cu, Pb, and Cr (3.782-1.002 µg/g); insignificant amounts (<1 µg/g) of Hg and V were also found in dUB. The trace elements Ag, As, Cd, Co, Li, Tl, Mo, Pd, Pt, and Sb were below detection limits (<0.1 µg/g). The DDM results-expressed as the size (mm) of the inhibition zone diameter (IZs)-proved that the water extract did not have any inhibitory activity on any pathogens (IZs = 0 mm). Gram-positive bacteria displayed the most significant susceptibility to all other UBDE, with Enterococcus casseliflavus showing the highest level (IZs = 20-22 mm). The most susceptible Gram-negative bacterium was Pseudomonas aeruginosa (IZs = 16-20 mm); the others were insensitive to all U. barbata dry extracts (IZs = 0 mm). The inhibitory activity of UBDE and UA on Candida albicans was slightly higher than on Candida parapsilosis.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: ; Tel.: +40-721528446
| | - Suzana Ioana Calcan
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Elena Iulia Cucolea
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Teodor Costache
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Dan Rambu
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania;
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Daniela Gherghel
- NIRDBS, Institute of Biological Research Iasi, 47 Lascar Catargi Street, 700107 Iasi, Romania; (D.G.); (G.V.)
| | - Gabriela Vochita
- NIRDBS, Institute of Biological Research Iasi, 47 Lascar Catargi Street, 700107 Iasi, Romania; (D.G.); (G.V.)
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania;
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| |
Collapse
|
6
|
Micheletti AC, Honda NK, Ravaglia LM, Matayoshi T, Spielmann AA. Antibacterial potencial of 12 Lichen species. AN ACAD BRAS CIENC 2021; 93:S0001-37652021000700904. [PMID: 34705932 DOI: 10.1590/0001-3765202120191194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Resistant bacterial infections are a major public health problem worldwide, which entails the need to search for new therapeutic agents. In this context, lichens stand out, provided that they are producers of structurally diverse compounds that have attractive biological properties, including antimicrobial activity. Thus, extracts of 12 lichen species were prepared and their potential to inhibit the growth of 5 bacterial strains was evaluated in this work. The chemical compositions of these extracts were examined using TLC and microcrystallization, being the identity of the active compounds in each extract attributed based on the bioautography technique. The most active extracts (and their identified active compounds) were from Cladonia borealis (usnic, barbatic and 4-O-demethylbarbatic acids), Cladina confusa (usnic and perlatolic acids), Stereocaulom ramulosum (atranorin, perlatolic and anziaic acids) and Canoparmelia cryptochlorophaea (cryptochlorophaeic and caperatic acids), with MICs ranging from 7.8 to 31.25 μg/mL, including for resistant clinical strains. MIC values were also obtained for substances isolated from lichens for comparison purposes. A group of four extracts containing usnic acid was analyzed by 1H NMR in order to correlate relative proportion of major metabolites and extracts activity. The less active extracts in this group, in fact, presented low proportion of usnic acid.
Collapse
Affiliation(s)
- Ana C Micheletti
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Sen. Filinto Muller, 1555, 79074-460 Campo Grande, MS, Brazil
| | - Neli K Honda
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Sen. Filinto Muller, 1555, 79074-460 Campo Grande, MS, Brazil
| | - Luciana M Ravaglia
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Sen. Filinto Muller, 1555, 79074-460 Campo Grande, MS, Brazil
| | - Tatiana Matayoshi
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Sen. Filinto Muller, 1555, 79074-460 Campo Grande, MS, Brazil
| | - Adriano A Spielmann
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Av. Costa e Silva, s/n, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
7
|
Mendili M, Seaward MRD, Khadhri A. Does the lichenicolous fungus Heterocephalacria bachmannii affect the antimicrobial potential of its host Cladonia foliacea? Nat Prod Res 2021; 36:3095-3099. [PMID: 34058928 DOI: 10.1080/14786419.2021.1933974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of the lichenicolous fungus Heterocephalacria bachmannii on the antimicrobial potential of the lichen Cladonia foliacea demonstrated that the extracts investigated have antimicrobial potential against gram-positive and negative bacteria, and yeast, and inhibit the germination of fungal spores. Inhibition activity varied considerably depending on the extract, the bacterial species, and the absence or presence of H. bachmannii; unparasitised C. foliacea has a higher antimicrobial activity. Methanol and acetone extracts of C. foliacea alone have higher inhibition diameters than C. foliacea with H. bachmannii against Enterobacter cloacae; the methanol extract of C. foliacea showed the best inhibition (250 µg/ml). C. foliacea also has a high lysozyme potential against Streptococcus agalactiae and Staphylococcus aureus. Fungal hyphae of Alternaria alternata were more affected by the methanol extract from C. foliacea.
Collapse
Affiliation(s)
- Mohamed Mendili
- Faculty of Sciences, Unit of Research of Plant Ecology, University of Tunis El-Manar II, Tunis, Tunisia
| | - Mark R D Seaward
- School of Archaeological & Forensic Sciences, University of Bradford, Bradford, UK
| | - Ayda Khadhri
- Faculty of Sciences, Unit of Research of Plant Ecology, University of Tunis El-Manar II, Tunis, Tunisia
| |
Collapse
|
8
|
Chemical Composition and Antimicrobial Activity of Two Sri Lankan Lichens, Parmotrema rampoddense, and Parmotrema tinctorum against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9985325. [PMID: 34122612 PMCID: PMC8189799 DOI: 10.1155/2021/9985325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022]
Abstract
Introduction Medicinal utility of lichens is ascribed to the presence of various secondary metabolites of low molecular weight and they have been used in traditional medicine including Ayurveda in the treatment of wounds and skin disorders. Despite the urgent need to effectively address the antibiotic resistance worldwide, the discovery of new antibacterial drugs has declined in the recent past. This emphasizes the increasing importance of investigating and developing new classes of antibiotics that can withstand antibiotic resistance. Aims of the study. The present study was conducted to investigate the chemical composition and the antibacterial activity of hexane, ethanol, and aqueous extracts of Parmotrema rampoddense and Parmotrema tinctorum, two lichens collected from Belihuloya, Sri Lanka, against Gram-negative and Gram-positive bacteria including twenty clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Materials and methods. Phytochemical analysis, thin layer chromatography (TLC), and Gas Chromatography Mass Spectrometry (GC-MS) were performed to determine the chemical composition of the two lichens. Hexane, ethanol, and aqueous extracts of both lichens were tested against clinical isolate of Gram-negative and Gram-positive bacteria including twenty clinical isolates of MRSA. Bacterial susceptibility was tested using a disc diffusion assay. Minimum inhibitory concentration (MIC) was determined by a broth microdilution method. Vancomycin was used as the positive control. Results Alectorialic acid, atranorin, atraric acid, orcinol, and O-orsellinaldehyde were among the secondary metabolites identified by the TLC and GC-MS analysis. None of the lichen extracts were active against Gram-negative bacteria but both lichens showed a concentration-dependent activity against methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. Ethanol extract of P. rampoddense showed the highest activity against MSSA with the MIC, 0.0192 mg/ml, but all MRSA isolates investigated showed MIC between 0.096 and 2.4 mg/ml for the same extract. Conclusion Both lichens, P. rampoddense and P. tinctorum, represent potentially important sources of future antimicrobial drugs. Further investigation on the ethanol extract of P. rampoddense will enable us to determine the most active phytoconstituents responsible for the activity, their mechanism of action against bacterial pathogens, and also their cytotoxicity against normal cells.
Collapse
|
9
|
Nugraha AS, Untari LF, Laub A, Porzel A, Franke K, Wessjohann LA. Anthelmintic and antimicrobial activities of three new depsides and ten known depsides and phenols from Indonesian lichen: Parmelia cetrata Ach. Nat Prod Res 2020; 35:5001-5010. [PMID: 32375511 DOI: 10.1080/14786419.2020.1761361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An extensive phytochemical study of a foliose lichen from Indonesia, Parmelia cetrata, resulted in the successful isolation of 13 phenol and depside derivatives (1-13) including the previously unreported depsides 3'-hydroxyl-5'-pentylphenyl 2,4-dihydroxyl-6-methylbenzoate (7), 3'-hydroxyl-5'-propylphenyl 2,4-dihydroxyl-6-methylbenzoate (8) and 3'-hydroxyl-5'-methylphenyl 2-hydroxyl-4-methoxyl-6-propylbenzoate (9). The anti-infective activity of isolated compounds was evaluated against the gram-negative bacterium Aliivibrio fischeri and the nematode Caenorhabditis elegans. 2,4-Dihydroxyl-6-pentylbenzoate (5) and lecanoric acid (6) induced growth inhibition of A. fischeri with inhibition values of 49% and 100% at a concentration of 100 µM, respectively. The antibacterial activity might be due to their free carboxyl group. A phenolic group at C4 also contributed to the antimicrobial activity of the depsides as shown for compounds 7 and 8, which caused 89% and 96% growth inhibition at 100 µM, respectively. Lecanoric acid (6) in addition possesses significant anthelmintic effects causing 80% mortality of C. elegans at 100 µg/mL.
Collapse
Affiliation(s)
- Ari Satia Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Indonesia.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | | | - Annegret Laub
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| |
Collapse
|
10
|
Letwin L, Malek L, Suntres Z, Christopher L. Cytotoxic and Antibiotic Potential of Secondary Metabolites from the Lichen Umbilicaria muhlenbergii. Curr Pharm Biotechnol 2020; 21:1516-1527. [PMID: 32364069 DOI: 10.2174/1389201021666200504114515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Lichens are emerging as a promising natural source of bioactivities of pharmaceutical interest. The present study aims to contribute to the knowledge of the lichen Umbilicaria muhlenbergii as a potential source of pharmaceutically relevant anticancer and antibiotic lichen chemicals. METHODS The crude acetone extract of U. muhlenbergii exhibited 13.3 μg mL-1 cytotoxic activity (EC50) against breast cancer cells (MCF-7), as compared to a cisplatin positive control with EC50 of 5.8 μg mL-1. The antibiotic activity of the crude extract against a gram-positive Staphylococcus aureus was 22.5 μg mL-1 as MIC. Using silica gel 60 (SG60) column chromatography, the crude extract was then separated into eight fractions, which were further evaluated for their anticancer activities against MCF-7 cells. By means of propidium iodide flow cytometry, two of the eight SG60 fractions were found to cause cell cycle arrest in MCF-7 cells (73.14% of cells) at the G2 phase, which is indicative of apoptosis and inhibition of cellular proliferation. RESULTS Identification of chemical constituents present in these two SG60 fractions was carried out with Thin-Layer Chromatography (TLC) and a lichen metabolite database (Wintabolites). The two fractions (SG60-5 and SG60-6) were found to contain compounds belonging to the chemical families depsides, depsidones, anthraquinones, and xanthones. DISCUSSION The SG60-5 and SG60-6 fractions were further fractionated with Sephadex LH-20. Over 15% of the 46 LH-20 fractions obtained from the SG60-5 fraction caused 100% cell death, whereas 32% of the LH-20 fractions derived from SG60 6 fraction reduced cell survival to below 20%. CONCLUSION This work extends the evaluation of the cytotoxic and antibiotic activities of lichen secondary metabolites to the species U. muhlenbergii. It presents encouraging results of pharmaceutical interest that set up lichens as an effective source of new bioactive natural products. Further investigations are underway to reveal the full biopharmaceutical potential of U. muhlenbergii.
Collapse
Affiliation(s)
- Lyndon Letwin
- Biorefining Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B 5Z5, Canada
| | - Ladislav Malek
- Biorefining Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B 5Z5, Canada
| | - Zacharias Suntres
- Biorefining Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B 5Z5, Canada
| | - Lew Christopher
- Biorefining Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B 5Z5, Canada
| |
Collapse
|
11
|
González-Burgos E, Fernández-Moriano C, Gómez-Serranillos MP. Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities and therapeutic potential. PHYTOCHEMISTRY 2019; 165:112051. [PMID: 31234093 DOI: 10.1016/j.phytochem.2019.112051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Parmelia Acharius is one of the most representative genera within Parmeliaceae family which is the largest and the most widespread family of lichen-forming fungi. Parmelia lichens present a medium to large foliose thallus and they are distributed from the Artic to the Antartic continents, being more concentrated in temperate regions. According to its current description, the genus encompasses up to 41 different species and it is phylogenetically located within the Parmelioid clade (the largest group in the family). Interestingly, some of its species are among the most common epiphytic lichens in Europe such as Parmelia sulcata Taylor and Parmelia saxatilis (L.) Ach. The present work aims at providing a complete overview of the existing knowledge on the genus, from general concepts such as taxonomy and phylogeny, to their ecological relevance and biological interest for pharmaceutical uses. As reported, Parmelia lichens arise as valuable tools for biomonitoring environmental pollution due to their capacity to bioaccumulate metal elements and its response to acid rain. Moreover, they produce a wide array of specialized products/metabolites including depsides, depsidones, triterpenes and dibenzofurans, which have been suggested to exert promising pharmacological activities, mainly antimicrobial, antioxidant and cytotoxic activities. Herein, we discuss past and recent data regarding to the phytochemical characterization of more than 15 species. Even though the knowledge is still scarce in comparsion to other groups of organisms such as higher plants and other non-lichenized fungi. Reviewed works suggest that Parmelia lichens are worthy of further research for determining their actual possibilities as sources of bioactive compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - Carlos Fernández-Moriano
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - M Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain.
| |
Collapse
|
12
|
Negut I, Grumezescu V, Grumezescu AM. Treatment Strategies for Infected Wounds. Molecules 2018; 23:E2392. [PMID: 30231567 PMCID: PMC6225154 DOI: 10.3390/molecules23092392] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
The treatment of skin wounds is a key research domain owing to the important functional and aesthetic role of this tissue. When the skin is impaired, bacteria can soon infiltrate into underlying tissues which can lead to life-threatening infections. Consequently, effective treatments are necessary to deal with such pathological conditions. Recently, wound dressings loaded with antimicrobial agents have emerged as viable options to reduce wound bacterial colonization and infection, in order to improve the healing process. In this paper, we present an overview of the most prominent antibiotic-embedded wound dressings, as well as the limitations of their use. A promising, but still an underrated group of potential antibacterial agents that can be integrated into wound dressings are natural products, especially essential oils. Some of the most commonly used essential oils against multidrug-resistant microorganisms, such as tea tree, St. John's Wort, lavender and oregano, together with their incorporation into wound dressings are presented. In addition, another natural product that exhibits encouraging antibacterial activity is honey. We highlight recent results of several studies carried out by researchers from different regions of the world on wound dressings impregnated with honey, with a special emphasis on Manuka honey. Finally, we highlight recent advances in using nanoparticles as platforms to increase the effect of pharmaceutical formulations aimed at wound healing. Silver, gold, and zinc nanoparticles alone or functionalized with diverse antimicrobial compounds have been integrated into wound dressings and demonstrated therapeutic effects on wounds.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
- Faculty of Physics, University of Bucharest, Magurele 077125, Romania.
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
- Research Institute of University of Bucharest, ICUB, Bucharest 050107, Romania.
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of potential antibacterial butyrolactones. Bioorg Med Chem 2016; 24:5823-5833. [DOI: 10.1016/j.bmc.2016.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
|
14
|
Dou JL, Jiang YW, Xie JQ, Zhang XG. New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections. Int J Mol Sci 2016; 17:E617. [PMID: 27120596 PMCID: PMC4881443 DOI: 10.3390/ijms17050617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is the most common pathogen of wound infections. Thus far, methicillin-resistant S. aureus (MRSA) has become the major causative agent in wound infections, especially for nosocomial infections. MRSA infections are seldom eradicated by routine antimicrobial therapies. More concerning, some strains have become resistant to the newest antibiotics of last resort. Furthermore, horizontal transfer of a polymyxin resistance gene, mcr-1, has been identified in Enterobacteriaceae, by which resistance to the last group of antibiotics will likely spread rapidly. The worst-case scenario, "a return to the pre-antibiotic era", is likely in sight. A perpetual goal for antibiotic research is the discovery of an antibiotic that lacks resistance potential, such as the recent discovery of teixobactin. However, when considering the issue from an ecological and evolutionary standpoint, it is evident that it is insufficient to solve the antibiotic dilemma through the use of antibiotics themselves. In this review, we summarized recent advances in antibiotic-based, antibiotic-free and ethnomedical treatments against MRSA wound infections to identify new clues to solve the antibiotic dilemma. One potential solution is to use ethnomedical drugs topically. Some ethnomedical drugs have been demonstrated to be effective antimicrobials against MRSA. A decline in antibiotic resistance can therefore be expected, as has been demonstrated when antibiotic-free treatments were used to limit the use of antibiotics. It is also anticipated that these drugs will have low resistance potential, although there is only minimal evidence to support this claim to date. More clinical trials and animal tests should be conducted on this topic.
Collapse
Affiliation(s)
- Jian-Lin Dou
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yi-Wei Jiang
- Spinal Surgery Department, Affiliated Hospital of Gansu University of Chinese Medicines, Lanzhou 730020, China.
| | - Jun-Qiu Xie
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiao-Gang Zhang
- Spinal Surgery Department, Affiliated Hospital of Gansu University of Chinese Medicines, Lanzhou 730020, China.
| |
Collapse
|
15
|
Şahin S, Oran S, Şahintürk P, Demir C, Öztürk Ş. R
amalina
Lichens and Their Major Metabolites as Possible Natural Antioxidant and Antimicrobial Agents. J Food Biochem 2015. [DOI: 10.1111/jfbc.12142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saliha Şahin
- Department of Chemistry; University of Uludag; 16059 Bursa Turkey
| | - Seyhan Oran
- Department of Biology; Faculty of Arts and Science; University of Uludag; 16059 Bursa Turkey
| | - Pınar Şahintürk
- Laboratory of Molecular Pharmacology; Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Uludag; 16059 Bursa Turkey
| | - Cevdet Demir
- Department of Chemistry; University of Uludag; 16059 Bursa Turkey
| | - Şule Öztürk
- Department of Biology; Faculty of Arts and Science; University of Uludag; 16059 Bursa Turkey
| |
Collapse
|
16
|
Shrestha G, Thompson A, Robison R, St Clair LL. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus. PHARMACEUTICAL BIOLOGY 2015; 54:413-418. [PMID: 25919857 DOI: 10.3109/13880209.2015.1038754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Antibiotic resistance in humans is a major concern. Drugs that target traditional sites and pathways are becoming obsolete; thus, compounds affecting novel targets are needed. Screening lichen metabolites for antimicrobials has yielded promising antimicrobial compounds, yet their mode of action is poorly understood. Letharia vulpina (L.) Hue (Parmeliaceae) has traditionally been used to poison predators, and treat stomach disorders; more recently L. vulpina extracts have demonstrated promising antimicrobial properties. OBJECTIVE This study investigates the mode of action of L. vulpina acetone extract against a methicillin-resistant Staphylococcus aureus (MRSA). MATERIAL AND METHODS We treated MRSA with L. vulpina extracts at 1×, 5×, and 10 × MIC values (MIC = 31.25 µg/ml) for 24 h and optical density (OD660) was measured over time to determine bacteriolytic activity; counted colony forming units (CFUs) to determine time kill dynamics; the propidium iodide (PI) assay and transmission electron microscopy were used to assess membrane-damage potential, and thin-layer chromatography was used to identify secondary compounds. RESULTS Bacteriolytic assays showed that L. vulpina extracts, containing only vulpinic acid, do not cause cell lysis, even at 10 × MIC values but there was 92% reduction in bacterial CFUs when treated with increased concentrations of lichen extracts over 24 h at 4 h intervals. Our data indicate that the L. vulpina extract compromises membrane integrity of the MRSA isolate and disrupts cell division processes. DISCUSSION AND CONCLUSION Based on this study, detailed examination of acetone extracts of L. vulpina as well as pure extracts of vulpinic acid as potential antibacterial compounds merit further study.
Collapse
Affiliation(s)
- Gajendra Shrestha
- a Department of Biology , Brigham Young University , Provo , UT , USA
- b M. L. Bean Life Science Museum , Brigham Young University , Provo , UT , USA , and
| | - Andrew Thompson
- a Department of Biology , Brigham Young University , Provo , UT , USA
| | - Richard Robison
- c Department of Microbiology and Molecular Biology , Brigham Young University , Provo , UT , USA
| | - Larry L St Clair
- a Department of Biology , Brigham Young University , Provo , UT , USA
- b M. L. Bean Life Science Museum , Brigham Young University , Provo , UT , USA , and
| |
Collapse
|