1
|
Liudvytska O, Bandyszewska M, Skirecki T, Krzyżanowska-Kowalczyk J, Kowalczyk M, Kolodziejczyk-Czepas J. Anti-inflammatory and antioxidant actions of extracts from Rheum rhaponticum and Rheum rhabarbarum in human blood plasma and cells in vitro. Biomed Pharmacother 2023; 165:115111. [PMID: 37421780 DOI: 10.1016/j.biopha.2023.115111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Rheum rhaponticum L. (rhapontic rhubarb) and Rheum rhabarbarum L. (garden rhubarb) are edible and medicinal rhubarb species used for many centuries in traditional medicine. This work is focused on the biological activity of extracts from petioles and roots of R. rhaponticum and R. rhabarbarum as well as rhapontigenin and rhaponticin, typical stilbenes present in these rhubarbs, in a context of their effects on blood physiology and cardiovascular health. Anti-inflammatory properties of the examined substances were evaluated in human peripheral blood mononuclear cells (PBMCs) and THP1-ASC-GFP inflammasome reporter cells. Due to the coexistence of inflammation and oxidative stress in cardiovascular diseases, the study design included also antioxidant assays. This part of the work involved the assessment of the protective efficiency of the examined substances against the peroxynitrite-triggered damage to human blood plasma components, including fibrinogen, a protein of critical importance for blood clotting and maintaining the haemostatic balance. Pre-incubation of PBMCs with the examined substances (1-50 μg/mL) considerably decreased the synthesis of prostaglandin E2 as well as the release of pro-inflammatory cytokines (IL-2 and TNF-α) and metalloproteinase-9. A reduced level of secreted apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks in the THP-1-ASC-GFP cells was also observed. The examined substances significantly diminished the extent of ONOO‾induced oxidative modifications of blood plasma proteins and lipids and normalized, or even strengthened blood plasma antioxidant capacity. Furthermore, a reduction of oxidative damage to fibrinogen, including modifications of tyrosine and tryptophan residues along with the formation of protein aggregates was found.
Collapse
Affiliation(s)
- Oleksandra Liudvytska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Magdalena Bandyszewska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Justyna Krzyżanowska-Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
2
|
Yin K, Yang J, Wang F, Wang Z, Xiang P, Xie X, Sun J, He X, Zhang X. A preliminary study of the chemical composition and bioactivity of Bombax ceiba L. flower and its potential mechanism in treating type 2 diabetes mellitus using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry and network pharmacology analysis. Front Nutr 2022; 9:1018733. [PMID: 36313078 PMCID: PMC9608341 DOI: 10.3389/fnut.2022.1018733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to preliminary investigate the phytochemistry, bioactivity, hypoglycemic potential, and mechanism of action of Bombax ceiba L. flower (BCF), a wild edible and food plant in China. By using methanol extraction and liquid-liquid extraction, the crude extract (CE) of BCF and its petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and aqueous (AQ) fractions were obtained, and their chemical components and biological activities were evaluated. Further high-performance liquid chromatography (HPLC) analysis was carried out to identify and quantify the active constituents of BFC and its five fractions, and the phytochemical composition of the best-performing fraction was then analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC/Q-TOF-MS). Finally, a network pharmacology strategy based on the chemical profile of this fraction was applied to speculate its main hypoglycemic mechanism. Results revealed the excellent biological activities of BCF, especially the EtOAc fraction. In addition to the highest total flavonoid content (TFC) (367.72 μg RE/mg E) and total phenolics content (TPC) (47.97 μg GAE/mg E), EtOAc showed the strongest DPPH⋅ scavenging ability (IC50 value = 29.56 μg/mL), ABTS⋅+ scavenging ability (IC50 value = 84.60 μg/mL), and ferric reducing antioxidant power (FRAP) (889.62 μg FeSO4/mg E), which were stronger than the positive control BHT. EtOAc also exhibited the second-best α-glucosidase inhibitory capacity and second-best acetylcholinesterase (AChE) inhibitory capacity with the IC50 values of 2.85 and 3.27 mg/mL, respectively. Also, EtOAc inhibited HepG2, MCF-7, Raw264.7, and A549 cell with IC50 values of 1.08, 1.62, 0.77, and 0.87 mg/mL, which were the second or third strongest in all fractions. Additionally, HPLC analysis revealed significant differences in the compounds’ abundance between different fractions. Among them, EtOAc had the most detected compounds and the highest content. According to the results of UPLC/Q-TOF-MS, 38 compounds were identified in EtOAc, including 24 phenolic acids and 6 flavonoids. Network pharmacological analysis further confirmed 41 potential targets of EtOAc in the treatment of type 2 diabetes, and intracellular receptor signaling pathways, unsaturated fatty acid, and DNA transcription pathways were the most possible mechanisms. These findings suggested that BCF was worthwhile to be developed as an antioxidant and anti-diabetic food/drug.
Collapse
Affiliation(s)
- Kehong Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Jinmei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, China
| | - Xing Xie
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Xuemei He,
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China,Xuechun Zhang,
| |
Collapse
|
3
|
Kozachok S, Kolodziejczyk-Czepas J, Marchyshyn S, Wojtanowski KK, Zgórka G, Oleszek W. Comparison of Phenolic Metabolites in Purified Extracts of Three Wild-Growing Herniaria L. Species and Their Antioxidant and Anti-Inflammatory Activities In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020530. [PMID: 35056848 PMCID: PMC8779723 DOI: 10.3390/molecules27020530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The work is aimed at phytochemical characterization and In Vitro evaluation of antioxidant actions, anti-inflammatory effects, and cytotoxicity of purified extracts from three rupturewort (Herniaria L.) species, i.e., Herniaria glabra (HG), H. polygama (HP), and H. incana herb (HIh). The total phenolic content established in the purified extracts (PEs) of HIh, HP, and HG was 29.6, 24.0, and 13.0%, respectively. Thirty-eight non-saponin metabolites were identified using LC-HR-QTOF-ESI-MS; however, only 9 were common for the studied Herniaria species. The most abundant phenolic compound in HG-PE was narcissin (7.4%), HP-PE shared 3 major constituents, namely cis-2-hydroxy-4-methoxycinnamic acid 2-O-β-glucoside (cis-GMCA, 5.8%), narcissin (5.4%), and rutin (5.3%). Almost half of HIh phenolic content (14.7%) belonged to oxytroflavoside A (7-O-methylkaempferol-3-O-[3-hydroxy-3-methylglutaryl-(1→6)]-[α-rhamnopyranosyl-(1→2)]-β-galactopyranoside). Antioxidant properties of the Herniaria PEs were evaluated employing an experimental model of human blood plasma, exposed to the peroxynitrite-induced oxidative stress. The assays demonstrated significant reduction of oxidative damage to protein and lipid plasma components (estimated by measurements of 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances), and moderate protection of its non-enzymatic antioxidant capacity. Anti-inflammatory properties of the Herniaria PEs were evaluated In Vitro as inhibitory effects against cyclooxygenases (COX-1 and -2) and concanavalin A-induced inflammatory response of the peripheral blood mononuclear cells (PBMCs). None of the studied plants showed inhibitory effects on COXs but all purified extracts partly reduced the release of interleukin 2 (IL-2) and tumor necrosis factor-alpha (TNF-α) from PBMCs, which suggested their prospective ability to up-regulate inflammatory response of the cells. The purified extract from H. glabra turned out to be the most efficient suppressor of PBMCs’ inflammatory response. Additionally, cytotoxicity of purified Herniaria extracts on PBMCs was ruled out based on In Vitro studies.
Collapse
Affiliation(s)
- Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
- Correspondence: (S.K.); (J.K.-C.); Tel.: +48-814-786-882 (S.K.); +48-42-635-44-83 (J.K.-C.)
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (S.K.); (J.K.-C.); Tel.: +48-814-786-882 (S.K.); +48-42-635-44-83 (J.K.-C.)
| | - Svitlana Marchyshyn
- Department of Pharmacognosy and Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine;
| | - Krzysztof Kamil Wojtanowski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland; (K.K.W.); (G.Z.)
| | - Grażyna Zgórka
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland; (K.K.W.); (G.Z.)
| | - Wieslaw Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
4
|
Osman EE, Mohamed AS, Elkhateeb A, Gobouri A, Abdel-Aziz MM, Abdel-Hameed ESS. Phytochemical investigations, antioxidant, cytotoxic, antidiabetic and antibiofilm activities of Kalanchoe laxiflora flowers. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2021.102085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Kolodziejczyk-Czepas J, Kozachok S, Pecio Ł, Marchyshyn S, Oleszek W. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. PHYTOCHEMISTRY 2021; 190:112861. [PMID: 34325241 DOI: 10.1016/j.phytochem.2021.112861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study is based on phytochemical profiling and in vitro evaluation of biological effects of phenolic acid derivatives-rich Herniaria fractions, isolated from two rupturewort (Herniaria L.) species, i.e. Herniaria incana Lam. (syn. H. besseri Fisch. ex Hornem) and H. polygama J. Gay (syn. H. odorata). For the first time, the composition of phenolic compounds of these species was extensively evaluated by both LC-HR-QTOF-ESI-MS and Nuclear Magnetic Resonance spectroscopy (NMR). LC-MS analyses of H. polygama revealed 72 tentatively identified compounds, while H. incana - 63. Only 8% of the metabolites reported in this work have been previously described for Herniaria spp. Most of the identified specialized metabolites were cinnamic and benzoic acid derivatives. Phenolic fraction of H. incana herb contained flavonoids as well. A multi-step chromatographic separation of phenolic fractions from H. polygama yielded three known cinnamic and one benzoic acid derivates, and from H. incana - 4 known flavonoids and one previously undescribed, i.e. rhamnocitrin-3-O-[3-hydroxy-3-methylglutaryl-(1 → 6'')]-[α-rhamnopyranosyl-(1 → 2'')]-β-glucopyranoside. Antioxidant properties of the examined fractions (1-50 μg/ml) were assessed in human blood plasma under the conditions of peroxynitrite-induced oxidative stress. Measurements of well-known biomarkers such as 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances and the ferric reducing ability of blood plasma revealed the protective effect of Herniaria fractions against oxidative damage to blood plasma components. Furthermore, the examined fractions effectively ameliorated the inflammatory response of the concanavalin A-stimulated human peripheral blood mononuclear cells (PBMCs). Additionally, cellular safety of the fractions was confirmed in PBMCs.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
6
|
Dietrich-Muszalska A, Kolodziejczyk-Czepas J, Nowak P. Comparative Study of the Effects of Atypical Antipsychotic Drugs on Plasma and Urine Biomarkers of Oxidative Stress in Schizophrenic Patients. Neuropsychiatr Dis Treat 2021; 17:555-565. [PMID: 33628026 PMCID: PMC7898201 DOI: 10.2147/ndt.s283395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Evidence that antipsychotic drugs (ADs) can affect oxidative stress estimated with various biomarkers in schizophrenic patients is controversial and limited. Therefore, in the present study, we assessed the ability of six atypical ADs (clozapine, olanzapine, quetiapine, risperidone, aripiprazole, and ziprasidone) used in schizophrenia treatment to modulate oxidative damage to different biomolecules such as lipids and proteins. PATIENTS AND METHODS We measured the levels of oxidative stress markers in plasma and urine: total antioxidant capacity by FRAP (according to a modified method of Benzie & Strain), thiobarbituric acid reactive species - TBARS (spectrophotometric method), 4-hydroxy-2-nonenal (4-HNE) (OxiSelect™ HNE Adduct Competitive ELISA Kit), 3-nitrotyrosine (3-NT) (OxiSelect™ Nitrotyrosine ELISA Kit) in plasma, and F2-isoprostanes (BIOXYTECH® Urinary 8-epi-Prostaglandin F2α) in the urine of 60 schizophrenic patients (before and after treatment) and in 30 healthy subjects. RESULTS Our results showed that in schizophrenic patients levels of lipid peroxidation markers (TBARS, F2-isoprostanes) were higher than in healthy subjects but FRAP in schizophrenic patients was lower than in healthy controls and increased after 4-week treatment with tested ADs. A 4-week treatment with ADs caused the improvement of psychopathology symptoms estimated by Positive and Negative Syndrome Scale (PANSS) that was accompanied by decreased lipid peroxidation (F2-isoprostanes, TBARS; p=2.9x10-6, p=7.6x10-5, respectively) and an increase in total antioxidative capacity (FRAP) (p=5.16x10-16). CONCLUSION Atypical antipsychotics especially clozapine, olanzapine and quetiapine demonstrate the effective outcome of antipsychotic treatment, beneficial antioxidative action by reducing lipid peroxidation and increased total plasma antioxidant activity.
Collapse
Affiliation(s)
- Anna Dietrich-Muszalska
- Medical University of Lodz, Department of Biological Psychiatry and Neurophysiology, Lodz, Poland
| | | | - Pawel Nowak
- University of Lodz, Department of General Biochemistry, Lodz, Poland
| |
Collapse
|
7
|
Mehdipoor Damiri GR, Motamedzadegan A, Safari R, Shahidi SA, Ghorbani A. Evaluation of stability, physicochemical and antioxidant properties of extracted chlorophyll from Persian clover (Trifolium resupinatum L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0015/jbcpp-2020-0015.xml. [PMID: 32776902 DOI: 10.1515/jbcpp-2020-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Trifolium repens belongs to the family Leguminosae and has been used for therapeutic purposes as traditional medicine. The plant is widely used as fodder and leafy vegetables for human uses. However, there is a lack of a detailed review of its phytochemical profile and pharmacological properties. This review presents a comprehensive overview of the phytochemical profile and biological properties of T. repens. The plant is used as antioxidants and cholinesterase inhibitors and for anti-inflammatory, antiseptic, analgesic, antirheumatic ache, and antimicrobial purposes. This review has summarized the available updated useful information about the different bioactive compounds such as simple phenols, phenolic acids, flavones, flavonols, isoflavones, pterocarpans, cyanogenic glucosides, saponins, and condensed tannins present in T. repens. The pharmacological roles of these secondary metabolites present in T. repens have been presented. It has been revealed that T. repens contain important phytochemicals, which is the potential source of health-beneficial bioactive components for food and nutraceuticals industries.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
9
|
Zeb A, Hussain A. Chemo-metric analysis of carotenoids, chlorophylls, and antioxidant activity of Trifolium hybridum. Heliyon 2020; 6:e03195. [PMID: 31956717 PMCID: PMC6956741 DOI: 10.1016/j.heliyon.2020.e03195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/18/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
This work determined carotenoids and chlorophylls profiles, in addition, the antioxidant potential of Trifolium hybridum from different geographical regions. Carotenoids separation and identification were carried out using HPLC-DAD. Result revealed eight carotenoids and nine chlorophylls in all samples. The major carotenoids were 8-apo-carotenal, all-E-neoxanthin, phytofluene, all-E-flavoxanthin, all-E-lutein and all-E-β-carotene. The major chlorophylls were pheophytin a, pyropheophytin a, hydroxyl-pheophytin a', hydroxyl-pheophytin a chlorophyll b and its derivatives, chlorophyll a, hydroxyl-chlorophyll a, pheophytin b, and pyropheophytin a. The highest concentrations of carotenoid were in extracts from Dir samples (382.5 μg/g), and Buner sample (485.1 μg/g), followed by the Malakand (379.6 μg/g) and Swat (375.3 μg/g). The principal component analysis revealed significant correlation in carotenoids and chlorophylls. Significant variations in carotenoids, chlorophylls, total flavonoids, and total phenolic contents were observed among all selected samples. The carotenoid and chlorophylls profile of Trifolium hybridum described herein could be useful for food colourant development in food industries.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Asif Hussain
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
The Effect of Standardised Flower Extracts of Sorbus aucuparia L. on Proinflammatory Enzymes, Multiple Oxidants, and Oxidative/Nitrative Damage of Human Plasma Components In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9746358. [PMID: 30863484 PMCID: PMC6378767 DOI: 10.1155/2019/9746358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Polyphenol-rich plant extracts might alleviate the negative impact of oxidative stress and inflammation, but careful phytochemical standardisation and evaluation of various mechanisms are required to fully understand their effects. In this context, flower extracts of Sorbus aucuparia L.-a traditional medicinal plant-were investigated in the present work. The LC-MS/MS profiling of the extracts, obtained by fractionated extraction, led to the identification of 66 constituents, mostly flavonols (quercetin and sexangularetin glycosides with dominating isoquercitrin), pseudodepsides of quinic and shikimic acids (prevailing isomers of chlorogenic acid and cynarin), and flavanols (catechins and proanthocyanidins). Minor extract components of possible chemotaxonomic value were flavalignans (cinchonain I isomers) and phenylamides (spermidine derivatives). As assessed by HPLC-PDA and UV-spectrophotometric studies, the extracts were polyphenol-abundant, with the contents up to 597.6 mg/g dry weight (dw), 333.9 mg/g dw, 382.0 mg/g dw, and 169.0 mg/g dw of total phenolics, flavonoids, proanthocyanidins, and caffeoylquinic acids, respectively. Their biological in vitro effects were phenolic-dependent and the strongest for diethyl ether, ethyl acetate, and n-butanol fractions of the methanol-water (7 : 3, v/v) extract. The extracts showed significant, concentration-dependent ability to scavenge in vivo-relevant radical/oxidant agents (O2 ∙-, OH∙, H2O2, ONOO-, NO∙, and HClO) with the strongest effects towards OH∙, ONOO-, HClO, and O2 ∙- (compared to ascorbic acid). Moreover, the extracts efficiently inhibited lipoxygenase and hyaluronidase (compared to indomethacin) but were inactive towards xanthine oxidase. At in vivo-relevant levels (1-5 μg/mL), they also effectively protected human plasma components (proteins and lipids) against ONOO--induced oxidative damage (reduced the levels of 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and normalised/enhanced the total nonenzymatic antioxidant capacity of plasma. In cytotoxicity tests, the extracts did not affect the viability of human PBMCs and might be regarded as safe. The results support the application of the extracts in the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes.
Collapse
|
11
|
Kozachok S, Pecio Ł, Kolodziejczyk-Czepas J, Marchyshyn S, Nowak P, Mołdoch J, Oleszek W. γ-Pyrone compounds: flavonoids and maltol glucoside derivatives from Herniaria glabra L. collected in the Ternopil region of the Ukraine. PHYTOCHEMISTRY 2018; 152:213-222. [PMID: 29783188 DOI: 10.1016/j.phytochem.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
The phytochemical investigation of the whole plant extracts of Herniaria glabra L. (Caryophyllaceae) led to the identification and isolation of four known flavonoids, one known and three undescribed maltol derivatives, and benzyl β-gentiobioside. The structures were established by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data. For the first time in Herniaria genus, as well as in Caryophylaceae family the presence of apiorutin {quercetin 3-O-[(D-apio-β-d-furanosyl-(1 → 2)-O-[-α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside]} and licoagroside B {maltol 3-O-[6-O-(3-hydroxy-3-methylglutaroyl)]-β-d-glucopyranoside} were revealed. Additionally, antioxidant actions of apiorutin, rutin, narcissin (isorhamentin 3-O-β-d-rutinoside) and licoagroside B were assessed in human blood plasma, exposed to the peroxynitrite-induced oxidative stress in vitro. The isolates partly reduced oxidative (oxidation of thiol groups) and nitrative (tyrosine nitration) damage to blood plasma proteins, decreased plasma lipid peroxidation as well as enhanced the non-enzymatic antioxidant capacity of blood plasma. No cytotoxicity of the examined substances towards peripheral blood mononuclear cells was found.
Collapse
Affiliation(s)
- Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I. Horbachevsky Ternopil State Medical University Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I. Horbachevsky Ternopil State Medical University Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
12
|
Kolodziejczyk-Czepas J, Sieradzka M, Moniuszko-Szajwaj B, Nowak P, Oleszek W, Stochmal A. Phenolic fractions from nine Trifolium species modulate the coagulant properties of blood plasma in vitro without cytotoxicity towards blood cells. ACTA ACUST UNITED AC 2018; 70:413-425. [PMID: 29341135 DOI: 10.1111/jphp.12872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/25/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The study covers an evaluation of the influence of extracts (1-50 μg/ml), isolated from aerial parts of nine Trifolium L. species (i.e. T. alexandrinum, T. fragiferum, T. hybridum, T. incarnatum, T. pallidum, T. pratense, T. resupinatum var. majus, T. resupinatum var. resupinatum and T. scabrum) on haemostatic properties of blood plasma. METHODS The clot formation and fibrinolysis assay (CFF), blood clotting times, the extrinsic and intrinsic coagulation pathway-dependent polymerization of plasma fibrin were measured. The effects of plant extracts on amidolytic activity of thrombin were also evaluated and compared with argatroban, an antithrombotic drug. Cytotoxicity was assessed in a model of blood platelets and as the viability of peripheral blood mononuclear cells. KEY FINDINGS While no changes in blood clotting times or fibrinolytic properties of blood plasma were found, some fractions impaired the blood plasma coagulation induced by the intrinsic coagulation pathway. Reduction in the maximal velocity of fibrin polymerization was also observed in the clot formation and fibrinolysis assay. No cytotoxicity of Trifolium extracts towards the investigated cells was recorded. CONCLUSIONS The most efficient anticoagulant activity in plasma was found for T. fragiferum and T. incarnatum extracts, while the T. alexandrinum fraction was the most effective inhibitor of thrombin amidolytic activity.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Malgorzata Sieradzka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wiesław Oleszek
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| |
Collapse
|
13
|
Matczak M, Marchelak A, Michel P, Owczarek A, Piszczan A, Kolodziejczyk-Czepas J, Nowak P, Olszewska MA. Sorbus domestica L. leaf extracts as functional products: phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Gaweł E, Grzelak M, Janyszek M. Lucerne ( Medicago sativa L.) in the human diet—Case reports and short reports. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Kolodziejczyk-Czepas J, Krzyżanowska-Kowalczyk J, Sieradzka M, Nowak P, Stochmal A. Clovamide and clovamide-rich extracts of three Trifolium species as antioxidants and moderate antiplatelet agents in vitro. PHYTOCHEMISTRY 2017; 143:54-63. [PMID: 28777978 DOI: 10.1016/j.phytochem.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/26/2023]
Abstract
This in vitro study provides a new insight into the phytochemical, antioxidant, antiplatelet and cytotoxic profiles of commercial trans-clovamide and clovamide-rich extracts, isolated from aerial parts of three Trifolium species (i.e. T. clypeatum L., T. obscurum Savi and T. squarrosum L.). Under inorganic experimental conditions, the EC50 for the investigated substances varied between 4.87 (clovamide) and 7.91 μg/ml (T. clypeatum) according to the DPPH• assay. The most effective 1 mM ONOO- scavenger was clovamide (IC50 = 19.29 μg/ml), and the weakest was the T. obsucurum extract (IC50 = 41.79 μg/ml). The antioxidant action of the examined substances (1-50 μg/ml) was also evaluated in blood plasma (under 100 μM ONOO--induced oxidative stress) using 3-nitrotyrosine, protein thiol groups, lipid hydroperoxides and thiobarbituric acid-reactive substances as biomarkers. All examined substances were more effective in limiting the oxidative damage to blood plasma components than the nitrative damage. Their anti-nitrative action was statistically significant only at the highest concentration (50 μg/ml). Measurements of platelet adhesion and aggregation found the compounds to have moderate antiplatelet properties of up to 20% inhibition of platelet adhesion at concentrations of 1-5 μg/ml. Additionally, clovamide and Trifolium extracts demonstrated no cytotoxicity towards blood platelets or peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Justyna Krzyżanowska-Kowalczyk
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland.
| | - Malgorzata Sieradzka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland.
| |
Collapse
|
16
|
Marchelak A, Owczarek A, Matczak M, Pawlak A, Kolodziejczyk-Czepas J, Nowak P, Olszewska MA. Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, Pro-inflammatory Enzymes Inhibition and Protective Effects Against Oxidative Stress In Vitro. Front Pharmacol 2017; 8:680. [PMID: 29085295 PMCID: PMC5649189 DOI: 10.3389/fphar.2017.00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
Flower extracts of Prunus spinosa L. (blackthorn)-a traditional medicinal plant of Central and Eastern Europe indicated for the treatment of urinary tract disorders, inflammation, and adjunctive therapy of cardiovascular diseases-were evaluated in terms of chemical composition, antioxidant activity, potential anti-inflammatory effects, and cellular safety in function of fractionated extraction. The UHPLC-PDA-ESI-MS3 fingerprinting led to full or partial identification of 57 marker constituents (36 new for the flowers), mostly flavonoids, A-type proanthocyanidins, and phenolic acids, and provided the basis for authentication and standardization of the flower extracts. With the contents up to 584.07 mg/g dry weight (dw), 490.63, 109.43, and 66.77 mg/g dw of total phenolics (TPC), flavonoids, proanthocyanidins, and phenolic acids, respectively, the extracts were proven to be rich sources of polyphenols. In chemical in vitro tests of antioxidant (DPPH, FRAP, TBARS) and enzyme (lipoxygenase and hyaluronidase) inhibitory activity, the extracts effects were profound, dose-, phenolic-, and extraction solvent-dependent. Moreover, at in vivo-relevant levels (1-5 μg/mL) the extracts effectively protected the human plasma components against peroxynitrite-induced damage (reduced the levels of oxidative stress biomarkers: 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and enhanced the total antioxidant status of plasma. The effects observed in biological models were in general dose- and TPC-dependent; only for protein nitration the relationships were not significant. Furthermore, in cytotoxicity tests, the extracts did not affect the viability of human peripheral blood mononuclear cells (PBMC), and might be regarded as safe. Among extracts, the defatted methanol-water (7:3, v/v) extract and its diethyl ether and ethyl acetate fractions appear to be the most advantageous for biological applications. As compared to the positive controls, activity of the extracts was favorable, which might be attributed to some synergic effects of their constituents. In conclusion, this research proves that the antioxidant and enzyme inhibitory capacity of phenolic fractions should be counted as one of the mechanisms behind the activity of the flowers reported by traditional medicine and demonstrates the potential of the extracts as alternative ingredients for functional products supporting the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes, especially in cardiovascular protection.
Collapse
Affiliation(s)
- Anna Marchelak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Magdalena Matczak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Adam Pawlak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika A Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Wang Z, Wu G, Liu H, Xing N, Sun Y, Zhai Y, Yang B, Kong ANT, Kuang H, Wang Q. Cardioprotective effect of the xanthones from Gentianella acuta against myocardial ischemia/reperfusion injury in isolated rat heart. Biomed Pharmacother 2017; 93:626-635. [PMID: 28686977 DOI: 10.1016/j.biopha.2017.06.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Gentianella acuta (Michx.) Hulten is widely used for the treatment of arrhythmia and coronary heart disease in Ewenki Folk Medicinal Plants and Mongolian Medicine, popularly known as "Wenxincao" in China. To investigate the potential protective role of the xanthones from G. acuta against myocardial I/R injury in isolated rat heart and its possible related mechanism. The protective role of xanthones on myocardial I/R injury was studied on Langendorff apparatus. The hemodynamic parameters including the left ventricular developed pressure (LVDP), the maximum rate of up/down left intraventricular pressure (±dp/dtmax), coronary flow (CF) and heart rate (HR) were recorded during the perfusion. The results demonstrated that the xanthones from G. acuta treatment significantly improved myocardial function (LVDP, ±dp/dtmax and CF), increased the levels of superoxide dismutase (SOD) and catalase (CAT), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), ATP and the ratio of glutathione and glutathione disulfide (GSH/GSSG), whereas suppressed the levels of Lactate dehydrogenase (LDH), creatine kinase (CK) and malondialdehyde (MDA). Furthermore, the xanthones upregulate the level of Bcl-2 protein and downregulate the level of Bax protein. These results indicated that xanthones from G. acuta exhibited cardioprotective effects on myocardial I/R injury through its activities of anti-oxidative effect and anti-apoptosis effect.
Collapse
Affiliation(s)
- Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China; Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gaosong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Hua Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yadong Zhai
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Ah-Ng Tony Kong
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China.
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Outer Ring Road, University Town, Guangzhou 510006, China.
| |
Collapse
|
18
|
Kolodziejczyk-Czepas J, Nowak P, Wachowicz B, Piechocka J, Głowacki R, Moniuszko-Szajwaj B, Stochmal A. Antioxidant efficacy of Kalanchoe daigremontiana bufadienolide-rich fraction in blood plasma in vitro. PHARMACEUTICAL BIOLOGY 2016; 54:3182-3188. [PMID: 27488985 DOI: 10.1080/13880209.2016.1214740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT The main source of bufadienolides is toad venom; however, plants such as members of Kalanchoe Adans. (Crassulaceae) genus may also synthesize these bioactive substances. OBJECTIVE This is the first study on antioxidant effects and cytotoxicity of bufadienolide-rich fraction isolated from Kalanchoe daigremontiana Raym.-Hamet & H. Perrier. MATERIALS AND METHODS The methanolic fraction was extracted from the plant roots and contained 0.48 mg bufadienolides/mg of dry mass (11α,19-dihydroksytelocinobufagin, bersaldegenin-1-acetate, bersaldegenin-1,3,5-orthoacetate, 19-(acetyloxy)-3β,5β,11α,14-tetrahydroxyl-12-oxo-bufa-20,22-dienolide and 19-(acetyloxy)-1β,3β,5β,14-tetrahydroxyl-bufa-20,22-dienolide, mainly). The cytotoxicity of K. daigremontiana fraction was evaluated in an in vitro experimental model of blood platelets. The viability of blood platelets was determined on the basis of a release of lactate dehydrogenase. RESULTS The fraction scavenged DPPH• radicals, with EC50 of 21.80 μg/mL. Studies on an experimental model of blood plasma under peroxynitrite-induced oxidative stress revealed that the plant preparation had moderate antioxidant properties. Levels of 3-nitrotyrosine and thiol groups indicated that the protective effect of K. daigremontiana was significant mainly for its concentration of 50 μg/mL. No effect was found in prevention of oxidation of low-molecular plasma thiols (glutathione, cysteine and cysteinylglycine). Simultaneously, measurements of lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) indicated that the examined fraction might be effective antioxidant at broader concentration range, that is 1-5 and 25-50 μg/mL for hydroperoxides and TBARS generation, respectively. No cytotoxicity was observed at the concentration range of 1-50 μg/mL. CONCLUSIONS Based on the obtained results, we suggest that antioxidant activity may additionally contribute to beneficial properties of K. daigremontiana-derived extracts.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Pawel Nowak
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Barbara Wachowicz
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Justyna Piechocka
- b Department of Environmental Chemistry, Faculty of Chemistry , University of Lodz , Lodz , Poland
| | - Rafał Głowacki
- b Department of Environmental Chemistry, Faculty of Chemistry , University of Lodz , Lodz , Poland
| | - Barbara Moniuszko-Szajwaj
- c Department of Biochemistry , Institute of Soil Science and Plant Cultivation, State Research Institute , Pulawy , Poland
| | - Anna Stochmal
- c Department of Biochemistry , Institute of Soil Science and Plant Cultivation, State Research Institute , Pulawy , Poland
| |
Collapse
|
19
|
Kolodziejczyk-Czepas J. Trifolium species - the latest findings on chemical profile, ethnomedicinal use and pharmacological properties. ACTA ACUST UNITED AC 2016; 68:845-61. [PMID: 27230819 DOI: 10.1111/jphp.12568] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Clovers (Trifolium, Fabaceae) have a long history of use in folk medicine. Furthermore, during last 3 years, a considerable growth in scientific interest in these plants has been observed. This article summarizes and critically reviews an over 3-year progress of knowledge of ethnomedicinal use, phytochemical profile, physiological effects and possible therapeutic action of various clover species. It contains the latest literature (over 80 papers), originated from international databases (MEDLINE/PubMed, Science Direct/Elsevier, Springer Link, Wiley Online Library) and reports from other international and local scientific periodicals. KEY FINDINGS Traditional uses of T. pratense and T. repens have been confirmed, while the folk medicine recommendations for administration of other clovers such as T. burchellianum, T. fragiferum, T. hybridum, T. minus and T. purpureum were reported for the first time. Furthermore, several other clover species were also investigated in terms of their antioxidant, antimicrobial and phytoestrogenic effects for the first time. Only T. alexandrinum, T. pratense and T. medium were examined in animal studies. SUMMARY Besides T. pratense, other clovers may be a rich source of bioactive phytochemicals. However, in contradiction to red clover, the therapeutic use of other clovers is still limited by the lack of in-vivo evidence.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Kamel EM, Mahmoud AM, Ahmed SA, Lamsabhi AM. A phytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity. Food Funct 2016; 7:2094-106. [DOI: 10.1039/c6fo00194g] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plants from the genus Trifolium have been utilized in the treatment of chronic diseases by many cultures.
Collapse
Affiliation(s)
- Emadeldin M. Kamel
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- Madrid
| | - Ayman M. Mahmoud
- Physiology Division
- Zoology Department
- Faculty of Science
- Beni-Suef University
- Beni-Suef
| | - Sayed A. Ahmed
- Organic Chemistry Department
- Faculty of Science
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Al Mokhtar Lamsabhi
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- Madrid
| |
Collapse
|
21
|
The anti-adhesive and anti-aggregatory effects of phenolics from Trifolium species in vitro. Mol Cell Biochem 2015; 412:155-64. [PMID: 26686341 PMCID: PMC4718934 DOI: 10.1007/s11010-015-2620-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022]
Abstract
The present in vitro study includes a comparative evaluation of anti-platelet (anti-thrombotic) properties of plant phenolics, isolated from nine different clover (Trifolium) species. The analysis covered phenolic fractions isolated from T. alexandrinum L., T. fragiferum L., T. hybridum L., T. incarnatum L., T. pallidum Waldst et Kit., T. resupinatum L. var. majus Boiss, T. resupinatum L. var. resupinatum, T. scabrum L., and T. pratense L. (red clover). The inhibitory effects of plant preparations (1–50 µg/ml) on hemostatic functions of blood platelets were assessed by measurements of thrombin- or ADP-induced platelet adhesion to fibrinogen, platelet aggregation in platelet-rich plasma (activated with ADP or collagen), and by the determination of PF-4 secretion from platelet α-granules. The influence of T. phenolics on arachidonic cascade in blood platelets was also determined. T. resupinatum var. majus, T. resupinatum var. resupinatum, and T. scabrum had the strongest anti-platelet effects. These preparations displayed the most evident anti-adhesive and anti-aggregatory effects in response to all of the used agonists: thrombin (0.2 U/ml), ADP (10 µM), and collagen (2 µg/ml), and their inhibitory properties were also confirmed by an analysis of PF-4 secretion. T. scabrum and some of other examined clover species possess significantly higher concentrations of both isoflavones and other bioactive phenolics, when compared to red clover. The obtained results suggest that these clovers contain substances with potent anti-platelet properties.
Collapse
|
22
|
Antioxidant action of six Trifolium species in blood platelet experimental system in vitro. Mol Cell Biochem 2015; 410:229-37. [PMID: 26350568 PMCID: PMC4628623 DOI: 10.1007/s11010-015-2556-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/03/2015] [Indexed: 01/05/2023]
Abstract
This study includes a comparative evaluation of antioxidant effects of plant extracts (1.5–50.0 μg/ml), derived from six clover (Trifolium) species: T. alexandrinum L., T. fragiferum L., T. hybridum L., T. incarnatum L., T. resupinatum var. majus Boiss., and T. resupinatum var. resupinatum L. Chemical profiles of the extracts contained three or four groups of (poly)phenolic compounds such as phenolic acids, clovamides, isoflavones, and other flavonoids. Antioxidant properties of Trifolium extracts were assessed as the efficacy to reduce oxidative and nitrative damage to blood platelets, exposed to 100 μM peroxynitrite-induced oxidative stress in vitro. Antioxidant actions of the examined extracts were determined by the following biomarkers of oxidative stress: thiol groups, 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances (TBARS). Despite the significant differences in the chemical composition (the total phenolic concentrations varied between 11.30 and 52.55 mg/g of dry mass) of Trifolium extracts, we observed noticeable protective effects of almost all tested plant preparations. The T. alexandrinum extract, containing the highest concentration of phenols, was the most effective antioxidant among the tested extracts. On the other hand, the T. incarnatum extract, which contained a comparable total phenolic content (49.77 mg/g), was less efficient in prevention of tyrosine nitration and generation of TBARS. These findings indicate on the important role of individual phenolic components of the examined clover extracts for the final antioxidative effects. Antioxidative properties of the remaining extracts were noticeably weaker.
Collapse
|
23
|
Kolodziejczyk-Czepas J, Nowak P, Moniuszko-Szajwaj B, Kowalska I, Stochmal A. Free radical scavenging actions of three Trifolium species in the protection of blood plasma antioxidant capacity in vitro. PHARMACEUTICAL BIOLOGY 2015; 53:1277-1284. [PMID: 25856697 DOI: 10.3109/13880209.2014.974064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Three clover [Trifolium L. (Leguminosae)] species were selected on the basis of data from traditional medicine, phytochemical profiles, and agricultural significance. OBJECTIVE The in vitro evaluations of free radical scavenging properties, ferric reducing abilities, and antioxidant effects of extracts from T. pratense L. (crude extract and phenolic fraction), T. pallidum L., and T. scabrum L. (phenolic fractions) were performed. MATERIALS AND METHODS Activities of the Trifolium extracts were determined at their final concentrations of 1.5-50 µg/ml. Free radical scavenging properties of methanol extract solutions were estimated by the reduction of DPPH(•) and ABTS(•) radicals. Measurements of the total antioxidant capacity (TAC) were carried out to assess the antioxidant activities of the extracts in human blood plasma under conditions of oxidative stress, induced by 200 μM peroxynitrite. RESULTS The phenolic fraction of T. pratense displayed the strongest ABTS(•) and DPPH(•) radical scavenging effects (EC50 value of 21.69 and 12.27 µg/ml, respectively). The EC50 value for T. pallidum extract attained 29.77 and 30.06 µg/ml. The two remaining extracts were less potent scavengers (EC50 value higher than 50 µg/ml). Similar differences were obtained during evaluation of the ferric reducing abilities. Analysis of antioxidant properties of the extracts in blood plasma did not provide such evident differences in their actions, however, it indicated that the T. pratense phenolic fraction displayed the strongest effect. CONCLUSIONS The examined Trifolium extracts partly protected blood plasma and enhanced its non-enzymatic antioxidant defense against harmful action of peroxynitrite in vitro.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland and
| | | | | | | | | |
Collapse
|
24
|
Hou X, Han J, Yuan C, Ren H, Zhang Y, Zhang T, Xu L, Zheng Q, Chen W. Cardioprotective Effects of Total Flavonoids Extracted from Xinjiang Sprig Rosa rugosa against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovasc Toxicol 2015; 16:54-66. [DOI: 10.1007/s12012-015-9308-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|