1
|
Martin F, Neubert A, Lutter AH, Scholka J, Hentschel E, Richter H, Anderer U. MTS, WST-8, and ATP viability assays in 2D and 3D cultures: Comparison of methodologically different assays in primary human chondrocytes. Clin Hemorheol Microcirc 2024; 88:S3-S19. [PMID: 39331094 PMCID: PMC11613004 DOI: 10.3233/ch-248101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Tissue engineering enables the production of three-dimensional microtissues which mimic naturally occurring conditions in special tissues. These 3D culture systems are particularly suitable for application in regenerative medicine or experimental pharmacology and toxicology. Therefore, it is important to analyse the cells in their 3D microenvironment with regard to viability and differentiation. Tetrazolium assays (WST-8 and MTS) are still the methods of choice for estimating the number of living, metabolically active cells, with WST-8 being cell-impermeable compared to MTS. In contrast to these methods, the ATP assay is an endpoint method based on the luciferase-induced reaction of ATP with luciferin after cell lysis. OBJECTIVE We compared three methodologically different proliferation/toxicity assays (MTS, WST-8, ATP) in monolayer (2D) and 3D culture systems to improve the technically challenging determination of the number of viable cells. METHODS Chondrocytes were isolated from human articular cartilage. Three different test systems (MTS, WST-8, ATP) were applied to monolayer cells (2D, varying cell numbers) and spheroids (3D, different sizes) in 96-well plates. The intracellular ATP concentration was determined by luciferase-induced reaction of ATP with luciferin using a luminometer. Formazan formation was measured spectrophotometrically after different incubation periods. Evaluation was performed by phase contrast microscopy (toxicity), correlation of cell count and ATP concentration or absorption signal (Gompertz function) and propidium iodide (PI) staining to proof the cell lysis of all cells in spheroids. RESULTS In 2D culture, all three assays showed a good correlation between the number of seeded cells and the ATP concentration or absorption data, whereas the MTS-assay showed the lowest specificity. In 3D culture, the spheroid sizes were directly related to the number of cells seeded. The absorption data of the WST-8 and MTS assay correlated only for certain spheroid size ranges, whereas the MTS-assay showed again the lowest specificity. Only the measured intracellular ATP content showed a linear correlation with all spheroid sizes ranging from 100-1000 μm. The WST-8 assay revealed the second-best sensitivity which allows the measurement of spheroids larger than 240 μm. Phase contrast observation of monolayer cells showed toxic effects of MTS after 6 h incubation and no signs of toxicity of WST-8. Staining with propidium iodide showed complete lysis of all cells in a spheroid in the ATP assay. CONCLUSION Among tetrazolium-based assays, WST-8 is preferable to MTS because of its non-toxicity and better sensitivity. When determining the number of viable cells in the 2D system, caution is advised when using the ATP assay because of its two-phase slope of the correlation graph concerning cell number and intracellular ATP. In 3D systems of human chondrocytes, the ATP-assay is superior to the other two test systems, as the correlation graph between cell number and intracellular ATP is biphasic. Since differentiation processes or other metabolic events can influence the results of proliferation and toxicity assays (determination of viable cells), this should be taken into account when using these test systems.
Collapse
Affiliation(s)
- Frank Martin
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Annemarie Neubert
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne-Helen Lutter
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jenny Scholka
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Heiko Richter
- Sana Klinikum Niederlausitz, Clinic for Orthopaedics and Trauma Surgery, Senftenberg, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
2
|
Rajpal A, Huart L, Nicolas C, Chevallard C, Guigner JM, Dasilva P, Mercere P, Gervais B, Hervé du Penhoat MA, Renault JP. Superoxide Production under Soft X-ray Irradiation of Liquid Water. J Phys Chem B 2023; 127:4277-4285. [PMID: 37140453 DOI: 10.1021/acs.jpcb.3c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Soft X-rays behave like particles with high linear energy transfer, as they deposit a large amount of their energy in the nanometric range, triggered by inner-shell ionization. In water, this can lead to the formation of a doubly ionized water molecule (H2O2+) and the emission of two secondary electrons (photoelectron and Auger electron). Our focus lies on detecting and quantifying the superoxide (HO2°) production via the direct pathway, i.e., from the reaction between the dissociation product of H2O2+, i.e., the oxygen atom (∼4 fs), and the °OH radicals present in the secondary electron tracks. The HO2° yield for 1620 eV photons, via this reaction pathway, was found to be 0.005 (±0.0007) μmol/J (formed within the ∼ps range). Experiments were also performed to determine the yield of HO2° production via another (indirect) pathway, involving solvated electrons. The indirect HO2° yield, measured experimentally as a function of photon energy (from 1700 to 350 eV), resulted in a steep decrease at around 1280 eV and a minimum close to zero at 800 eV. This behavior in contradiction with the theoretical prediction reveals the complexity hidden in the intratrack reactions.
Collapse
Affiliation(s)
- Aashini Rajpal
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
- Sorbonne Université, IMPMC, UMR CNRS 7590, IMPMC, 75005 Paris, France
- Synchrotron SOLEIL, Saint Aubin 91190, France
| | - Lucie Huart
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
- Sorbonne Université, IMPMC, UMR CNRS 7590, IMPMC, 75005 Paris, France
- Synchrotron SOLEIL, Saint Aubin 91190, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Investigation on Metabolites in Structure and Biosynthesis from the Deep-Sea Sediment-Derived Actinomycete Janibacter sp. SCSIO 52865. Molecules 2023; 28:molecules28052133. [PMID: 36903380 PMCID: PMC10003874 DOI: 10.3390/molecules28052133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
For exploring structurally diverse metabolites and uniquely metabolic mechanisms, we systematically investigated the chemical constituents and putative biosynthesis of Janibacter sp. SCSIO 52865 derived from the deep-sea sediment based on the OSMAC strategy, molecular networking tool, in combination with bioinformatic analysis. As a result, one new diketopiperazine (1), along with seven known cyclodipeptides (2-8), trans-cinnamic acid (9), N-phenethylacetamide (10) and five fatty acids (11-15), was isolated from the ethyl acetate extract of SCSIO 52865. Their structures were elucidated by a combination of comprehensive spectroscopic analyses, Marfey's method and GC-MS analysis. Furthermore, the analysis of molecular networking revealed the presence of cyclodipeptides, and compound 1 was produced only under mBHI fermentation condition. Moreover, bioinformatic analysis suggested that compound 1 was closely related to four genes, namely jatA-D, encoding core non-ribosomal peptide synthetase and acetyltransferase.
Collapse
|
4
|
Ding W, Li Y, Tian X, Chen M, Xiao Z, Chen R, Yin H, Zhang S. Investigation on Metabolites in Structural Diversity from The Deep-Sea Sediment-Derived Bacterium Agrococcus sp. SCSIO 52902 and Their Biosynthesis. Mar Drugs 2022; 20:md20070431. [PMID: 35877724 PMCID: PMC9323897 DOI: 10.3390/md20070431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| |
Collapse
|
5
|
Ma F, Deng Q, Lou H, Li J, Xu S, Wu W, Wen Q, Tang L, Wang X, Pan W. Vulgarisin-type diterpenoids from self-heal ( Prunella vulgaris) and their neuroprotective effects against ischemia/reperfusion (I/R) via a mitochondria-related pathway. Food Funct 2022; 13:7062-7074. [PMID: 35678758 DOI: 10.1039/d2fo00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-heal (Prunella vulgaris L.) is a perennial edible plant that is widely distributed across the world and is traditionally consumed as a food additive in soft drink beverages. In this study, to explore the functional components of P. vulgaris, an investigation of its ethanol extracts has been conducted by our group. As a result, twelve (1-12) vulgarisin-type diterpenoids with a special 5/6/4/5-fused ring skeleton, including six new ones (1-6), were obtained. Their structures including the absolute configuration were elucidated based on comprehensive spectroscopic evidence, ECD calculations, as well as single-crystal X-ray diffraction analyses. All the isolates were tested for neuroprotective effects against ischemia/reperfusion (I/R) on primary neuron cells through the oxygen and glucose deprivation and reperfusion (OGD/R) induced injury model. The results showed that all twelve vulgarisin-type diterpenoids possess promising neuroprotective activity at a concentration of 10 μM. Among them, compound 3 can significantly suppress cell apoptosis by regulating Bax/Bcl-2 protein expression and inhibiting cleaved caspase-3 and caspase-9 expression with a western blotting assay. Further research revealed that compound 3 could improve mitochondrial function by inhibiting mitochondrial cytochrome c release, reducing ROS levels, and maintaining the membrane potential. This work firstly reports vulgarisin-type diterpenoids possessing neuroprotective activity. These findings also suggest that daily consumption of P. vulgaris might prevent cerebral disorders via a mitochondria-related pathway.
Collapse
Affiliation(s)
- Fengwei Ma
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China. .,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China.,Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China. .,Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guiyang Normal University, Guiyang, Guizhou, 550001, China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Jinyu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Su Xu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Qihua Wen
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| |
Collapse
|
6
|
Ding W, Li Y, Chen M, Chen R, Tian X, Yin H, Zhang S. Structures and antitumor activities of ten new and twenty known surfactins from the deep-sea bacterium Limimaricola sp. SCSIO 53532. Bioorg Chem 2021; 120:105589. [PMID: 34998120 DOI: 10.1016/j.bioorg.2021.105589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/04/2021] [Accepted: 12/26/2021] [Indexed: 11/28/2022]
Abstract
Surfactins are natural biosurfactants with myriad potential applications in the areas of healthcare and environment. However, surfactins were almost exclusively produced by the bacterium Bacillus species in previous reported literatures, together with difficulty in isolating pure monomer, which resulted in making extensive effort to remove duplication and little discovery of new surfactins in recent years. In the present study, the result of Molecular Networking indicated that Limimaricola sp. SCSIO 53532 might well be a potential resource for surfacin-like compounds based on OSMAC strategy. To search for new surfactins with significant biological activity, further study was undertaken on the strain. As a result, ten new surfactins (1-10), along with twenty known surfactins (11-30), were isolated from the ethyl acetate extract of SCSIO 53532. Their chemical structures were established by detailed 1D and 2D NMR spectroscopy, HRESIMS data, secondary ion mass spectrometry (MS/MS) analysis, and chemical degradation (Marfey's method) analysis. Cytotoxic activities of twenty-seven compounds against five human tumor cell lines were tested, and five compounds showed significant antitumor activities with IC50 values less than 10 μM. Furtherly, analysis of structure-activity relationships revealed that the branch of side chain, the esterification of Glu or Asp residue, and the amino acid residue of position 7 possessed a great influence on antitumor activity.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
7
|
Le J, Zhongqun L, Zhaoyan W, Yijun S, Yingjin W, Yaojie W, Yanan J, Zhanrong J, Chunyang M, Fangli G, Nan X, Lingyun Z, Xiumei W, Qiong W, Xiong L, Xiaodan S. Development of methods for detecting the fate of mesenchymal stem cells regulated by bone bioactive materials. Bioact Mater 2021; 6:613-626. [PMID: 33005826 PMCID: PMC7508719 DOI: 10.1016/j.bioactmat.2020.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
The fate of mesenchymal stem cells (MSCs) is regulated by biological, physical and chemical signals. Developments in biotechnology and materials science promoted the occurrence of bioactive materials which can provide physical and chemical signals for MSCs to regulate their fate. In order to design and synthesize materials that can precisely regulate the fate of MSCs, the relationship between the properties of materials and the fate of mesenchymal stem cells need to be clarified, in which the detection of the fate of mesenchymal stem cells plays an important role. In the past 30 years, a series of detection technologies have been developed to detect the fate of MSCs regulated by bioactive materials, among which high-throughput technology has shown great advantages due to its ability to detect large amounts of data at one time. In this review, the latest research progresses of detecting the fate of MSCs regulated by bone bioactive materials (BBMs) are systematically reviewed from traditional technology to high-throughput technology which is emphasized especially. Moreover, current problems and the future development direction of detection technologies of the MSCs fate regulated by BBMs are prospected. The aim of this review is to provide a detection technical framework for researchers to establish the relationship between the properties of BMMs and the fate of MSCs, so as to help researchers to design and synthesize BBMs better which can precisely regulate the fate of MSCs.
Collapse
Affiliation(s)
- Jiang Le
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Liu Zhongqun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Zhaoyan
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Su Yijun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Yingjin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wei Yaojie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jiang Yanan
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jia Zhanrong
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ma Chunyang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Gang Fangli
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xu Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhao Lingyun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Xiumei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wu Qiong
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Lu Xiong
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Sun Xiaodan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
8
|
Sriwidodo S, Maksum IP, Subroto T, Wathoni N, Subarnas A, Umar AK. Activity and Effectiveness of Recombinant hEGF Excreted by Escherichia coli BL21 on Wound Healing in Induced Diabetic Mice. J Exp Pharmacol 2020; 12:339-348. [PMID: 33061675 PMCID: PMC7532914 DOI: 10.2147/jep.s265727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023] Open
Abstract
Context Human epidermal growth factor (hEGF) has biological activities and can be used in medicines and cosmetics. A high level of effectiveness of hEGF can be obtained when three disulfide bonds fold perfectly. Extracellular secretion from E. coli BL21 using the PelB signal peptide is a new way to obtain hEGF with a structure that folds appropriately. Object This study aimed to determine the activity and effectiveness of recombinant hEGF excreted by E. coli BL21 on wound healing in induced diabetic mice. Methods Cell proliferation and migration tests were performed on NIH3T3 cells, followed by wound healing tests in induced diabetic mice, along with histological and endotoxin test at various hEGF concentrations (25, 50, and 75 µg/mL). Results Based on the results, hEGF at a level of 50 μg/mL showed optimal proliferation and migration activities. Wound healing in induced diabetic mice showed faster-wound closure within 12 days at hEGF 50 and 75 µg/mL with a percentage wound closure of 95% and 98.5%, respectively, which was significant versus control. In the histology test, the number of fibroblasts showed an increase and was significant at hEGF 75 µg/mL compared to the control group. The single test vial (STV) showed that hEGF solution was free of endotoxin. Conclusion Recombinant hEGF produced by extracellular secretion using E. coli BL21 has optimal diabetic wound healing activity through increased fibroblast proliferation.
Collapse
Affiliation(s)
- Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Anas Subarnas
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
9
|
Rui J, Xu N, Yin J, Yu Y, Bai R, Su W, Ruan B. The EZMTT cell proliferation assay provides precise measurement for drug combinations and better correlation between in vitro and in vivo efficacy. Bioorg Med Chem Lett 2020; 30:127134. [PMID: 32253062 DOI: 10.1016/j.bmcl.2020.127134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
The rate of drug-induced proliferation (DIP) has been proposed as an unbiased alternative drug effect metric. However, current assays are not easy and precise enough to track minor changes in cell growth. Here, we report the optimized EZMTT based detection method which can continuously measure time-dependent growth after drug treatment and reliably detect partial drug resistance for cancer cells. Importantly, tracking time-dependent growth after drug treatment demonstrated that a KGA allosteric inhibitor alone failed to completely inhibit cancer cell growth, but a drug combination was able to provide complete inhibition in cell-based assays that translated well in in vivo animal experiments. In conclusion, this simple EZMTT method provided precise measurement of loss of susceptibility after drug treatment and has great potential to be developed for drug efficacy and drug combination studies to solve the unmet medical need.
Collapse
Affiliation(s)
- Jingjing Rui
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Xu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - JianBing Yin
- Zhejiang Center for Medical Device Adverse Event Monitoring and Safety Research, China
| | - Yan Yu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruisong Bai
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weike Su
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Benfang Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
10
|
Xie T, Fang H, Ouyang W, Angart P, Chiang MJ, Bhirde AA, Sheikh F, Lynch P, Shah AB, Patil SM, Chen K, Shen M, Agarabi C, Donnelly RP, Brorson K, Schrieber SJ, Howard KE, Rogstad SM, Frucht DM. The ELISA Detectability and Potency of Pegfilgrastim Decrease in Physiological Conditions: Key Roles for Aggregation and Individual Variability. Sci Rep 2020; 10:2476. [PMID: 32051479 PMCID: PMC7016140 DOI: 10.1038/s41598-020-59346-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/22/2020] [Indexed: 01/15/2023] Open
Abstract
PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to accelerate immune reconstitution following chemotherapy and is being pursued for biosimilar development. One challenge to overcome in pegfilgrastim biosimilar development is establishing pharmacokinetic (PK) similarity, which is partly due to the degree of PK variability. We herein report that commercially available G-CSF and PEG ELISA detection kits have different capacities to detect pegfilgrastim aggregates that rapidly form in vitro in physiological conditions. These aggregates can be observed using SDS-PAGE, size-exclusion chromatography, dynamic light scattering, and real-time NMR analysis and are associated with decreased bioactivity as reflected by reduced drug-induced cellular proliferation and STAT3 phosphorylation. Furthermore, individual variability in the stability and detectability of pegfilgrastim in human sera is also observed. Pegfilgrastim levels display marked subject variability in sera from healthy donors incubated at 37 °C. The stability patterns of pegfilgrastim closely match the stability patterns of filgrastim, consistent with a key role for pegfilgrastim's G-CSF moiety in driving formation of inactive aggregates. Taken together, our results indicate that individual variability and ELISA specificity for inactive aggregates are key factors to consider when designing and interpreting studies involving the measurement of serum pegfilgrastim concentrations.
Collapse
Affiliation(s)
- Tao Xie
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hui Fang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Weiming Ouyang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Phillip Angart
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Meng-Jung Chiang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ashwinkumar A Bhirde
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Faruk Sheikh
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Patrick Lynch
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ankit B Shah
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sharadrao M Patil
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kang Chen
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Meiyu Shen
- Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Cyrus Agarabi
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Raymond P Donnelly
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kurt Brorson
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sarah J Schrieber
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kristina E Howard
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sarah M Rogstad
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - David M Frucht
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America.
| |
Collapse
|
11
|
Singh SK, Kumar D, Rathore AS. Determination of Critical Quality Attributes for a Biotherapeutic in the QbD Paradigm: GCSF as a Case Study. AAPS JOURNAL 2017; 19:1826-1841. [DOI: 10.1208/s12248-017-0139-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022]
|