1
|
Yang Y, Chen D, Li Y, Zou J, Han R, Li H, Zhang J. Effect of Puerarin on Osteogenic Differentiation in vitro and on New Bone Formation in vivo. Drug Des Devel Ther 2022; 16:2885-2900. [PMID: 36060929 PMCID: PMC9433167 DOI: 10.2147/dddt.s379794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Puerarin (C21H20O10) is a phytoestrogen that possesses various pharmacological effect, and several researches have revealed the relationship between puerarin and bone metabolism. This study was aimed to evaluate the potential influence of puerarin on the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) as well as on new bone formation following rapid maxillary expansion (RME) model in rats. Methods Rat BMSCs were adopted, and the cell proliferation was detected by cell-counting kit-8 (CCK-8) assay in vitro experiments. Alkaline phosphatase (ALP) activity and alizarin red staining were analyzed quantitatively to show extracellular matrix mineralization. The mRNA and protein expression levels were used to detect osteogenic differentiation of BMSCs. In vivo bone regeneration was analyzed in a rat RME model. Eighteen 6-week-old male Wistar rats were divided into 3 groups: group 1 without any treatment, group 2 received RME and saline solution (15mg/kg), group 3 received RME and puerarin solution (15mg/kg). After 2 weeks, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, and Masson staining were used to detect the new bone formation and morphological changes. Besides, ALP and bone morphogenetic protein 2 (BMP2) expression levels in mid-palatal suture were evaluated by immunohistochemical staining. Results The results showed that puerarin upregulates cell proliferation dose-dependently. ALP activity and mineralized matrix generation were clearly enhanced at certain specific concentrations (10−5 and 10−6 mol/L); the expression levels of the osteoblast-related genes and proteins were increased. The measurement of micro-CT imaging revealed that puerarin significantly promoted new bone formation. Concomitantly, the histological examinations showed that puerarin solution enhanced osteogenesis in mid-palatal suture. Conclusion Those works indicated that puerarin regulates osteogenesis in vitro and exerts a beneficial impact on bone regeneration in vivo, revealing that puerarin treatment may become one of the potential keys for improving the stability and preventing relapse of RME.
Collapse
Affiliation(s)
- Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Daiyun Chen
- Department of Orthodontics, School of Stomatology, Shandong First Medical University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, Tel +86 13953109816, Fax +86 53188382923, Email
| |
Collapse
|
2
|
Xi Y, Wang W, Xu N, Shi C, Xu G, Sun J, He H, Jiang T. Myricetin loaded nano-micelles delivery system reduces bone loss induced by ovariectomy in rats through inhibition of osteoclast formation. J Pharm Sci 2022; 111:2341-2352. [PMID: 35341721 DOI: 10.1016/j.xphs.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
In recent years, much attention has been paid to the therapeutic effects of phytochemicals on osteoporosis. Other studies have shown that myricetin (MY) could promote osteogenic activity and inhibit osteoclastic effect, albeit little is known about effect of MY micellar system on osteoporosis. Therefore, we sought to discuss the therapeutic effect and mechanism of MY-loaded bone-targeting micelles on osteoporosis induced by ovariectomy (OVA) in rats. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles were prepared via ethanol injection method, while in vitro release study, bone targeting, pharmacokinetic studies, and the effect on proliferation of osteoblasts were investigated. Further, the therapeutic effect on osteoporosis was studied through ovariectomized rats. Compared with free MY, oral bioavailability of AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles in rats was increased by 3.54 times. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles exhibited bone targeting potential, and could significantly increase the activity of alkaline phosphatase and promote the proliferation of osteoblasts. Importantly, AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles mainly regulated bone metabolism by inhibiting bone resorption, thereby improving the symptoms of osteoporosis in OVA rats. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles substantially enhanced the oral bioavailability of MY and demonstrated good bone targeting capability, thereby suggesting its prospect as carrier for osteoporotic improvement in OVA rats.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weiheng Wang
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ning Xu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Changgui Shi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Guohua Xu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jinxing Sun
- Department of Spine Surgery, Shandong Wendeng Osteopathic Hospital, Weihai 264200, China
| | - Hailong He
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Tingwang Jiang
- Department of Key Laboratory, The Affiliated Changshu Hospital of Xuzhou Medical School, The Second People's Hospital of Changshu, Changshu 215500, China.
| |
Collapse
|
3
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
4
|
Evaluation of toxicity and anti-osteoporosis effect in rats treated with the flavonoids of Psoraleae Fructus. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Li L, Liu J, Gao G, Zhang K, Song Y, Li H. Puerarin 6″-O-xyloside suppressed HCC via regulating proliferation, stemness, and apoptosis with inhibited PI3K/AKT/mTOR. Cancer Med 2020; 9:6399-6410. [PMID: 32691991 PMCID: PMC7476825 DOI: 10.1002/cam4.3285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Puerarin 6″-O-xyloside is a tumor suppressive derivate of Puerarin that is recently characterized as a lysine-specific demethylase 6B inhibitor. Here we investigated the effects of Puerarin 6″-O-xyloside in hepatocellular carcinoma (HCC) cell lines SMMC-7721 and HepG2. Cell viability, proliferation, stemness, protein expression, and autophagy were tested by CCK-8, colony formation, sphere formation, western blotting, and LC3B GFP puncta per cell, respectively. Apoptosis, CD133-positive cells, and JC-1-labeled mitochondrial membrane potential were measured by flow cytometry. The effects of Puerarin 6″-O-xyloside in vivo were explored in HepG2 xenograft mice. Puerarin 6″-O-xyloside inhibited cell viability, proliferation, and stemness, and promoted apoptosis in both SMMC-7721 and HepG2 cells. Further experiments showed promoted autophagy and decreased mitochondrial membrane potential, and decreased expression of p-PI3K, p-AKT, and p-mTOR in HepG2 cells. Co-administration of 3-MA with Puerarin 6″-O-xyloside obviously augmented these effects including inhibited protein expression of p-PI3K, p-AKT, and p-mTOR, and inhibited proliferation, promoted apoptosis, and decreased stemness. In HepG2 xenograft mice, 100 mg/kg/d Puerarin 6″-O-xyloside significantly suppressed tumor growth, stemness, and apoptosis. In conclusion, our study indicated that Puerarin 6″-O-xyloside decreased cell viability, proliferation, and stemness, and promoted autophagy and mitochondria-dependent apoptosis of HCC, at least partly through inhibiting PI3K/AKT/mTOR. These results highlighted Puerarin 6″-O-xyloside as a promising prodrug that could inhibit both PI3K/AKT/mTOR and epigenetic demethylation.
Collapse
Affiliation(s)
- Long Li
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Jun‐Dong Liu
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Guo‐Dong Gao
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Kai Zhang
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Yu‐Wei Song
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Hong‐Bo Li
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| |
Collapse
|
6
|
Tao X, Yin Y, Lian D, Gu H, Chen W, Yang L, Yin G, Liu P, Li L, Wei Y, Xie Z, Liu F, Sui H, Yan D, Tao W. Puerarin 6″-O-xyloside suppresses growth, self-renewal and invasion of lung cancer stem-like cells derived from A549 cells via regulating Akt/c-Myc signalling. Clin Exp Pharmacol Physiol 2020; 47:1311-1319. [PMID: 32124474 DOI: 10.1111/1440-1681.13294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 01/21/2023]
Abstract
Cancer stem cells have been identified as the major cause of cancer initiation and progression. To investigate the effects of puerarin 6″-O-xyloside (PXY), derived from Pueraria lobata (Willd.) Ohwi, on lung cancer stem cells, we enriched and identified a subpopulation of lung cancer stem-like cells (LCSLCs) derived from lung adenocarcinoma A549 cells with traits including high self-renewal and invasive capability in vitro, elevated tumourigenicity in vivo, and high expression of stem cell markers CD44, CD133 and aldehyde dehydrogenase 1 (ALDH1). We found that PXY could impair cell viability, suppress self-renewal and invasive capability, and decrease CD133, CD44 and ALDH1 mRNA expression in LCSLCs in a dose-dependent manner. Furthermore, we showed that PXY suppressed the self-renewal and invasive capability of LCSLCs at least in part through suppressing the activation of Akt/c-Myc signalling. In conclusion, PXY can block the traits of LCSLCs, indicating that PXY may be a candidate compound for lung adenocarcinoma therapy via eliminating LCSLCs.
Collapse
Affiliation(s)
- Xiaomei Tao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
- International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Yefeng Yin
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dongbo Lian
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongyan Gu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Chen
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Yang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Gang Yin
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Pengfei Liu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lili Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Wei
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhengzheng Xie
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Fei Liu
- Department of Clinical Nutrition, Chengdu Fifth People's Hospital, Chengdu, China
| | - Hangshuo Sui
- Department of Clinical Nutrition, Chengde Central Hospital, Chengde, China
| | - Dan Yan
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
- International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Weiwei Tao
- College of Nursing, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Zhou S, Tao Z, Zhu Y, Tao L. Mapping theme trends and recognizing hot spots in postmenopausal osteoporosis research: a bibliometric analysis. PeerJ 2019; 7:e8145. [PMID: 31788368 PMCID: PMC6882420 DOI: 10.7717/peerj.8145] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to draw a series of scientific maps to quantitatively and qualitatively evaluate hot spots and trends in postmenopausal osteoporosis research using bibliometric analysis. Methods Scientific papers published on postmenopausal osteoporosis were extracted from the Web of Science Core Collection and PubMed database. Extracted information was analyzed quantitatively with bibliometric analysis by CiteSpace, the Online Analysis Platform of Literature Metrology and Bibliographic Item Co-Occurrence Matrix Builder (BICOMB). To explore the hot spots in this field, co-word biclustering analysis was conducted by gCLUTO based on the major MeSH terms/MeSH subheading terms-source literatures matrix. Results We identified that a total of 5,247 publications related to postmenopausal osteoporosis were published between 2013 and 2017. The overall trend decreased from 1,071 literatures in 2013 to 1,048 literatures in 2017. Osteoporosis International is the leading journal in the field of postmenopausal osteoporosis research, both in terms of impact factor score (3.819) and H-index value (157). The United States has retained a top position and has exerted a pivotal influence in this field. The University of California, San Francisco was identified as a leading institution for research collaboration, and Professors Reginster and Kanis have made great achievements in this area. Eight research hot spots were identified. Conclusions Our study found that in the past few years, the etiology and drug treatment of postmenopausal osteoporosis have been research hot spots. They provide a basis for the study of the pathogenesis of osteoporosis and guidelines for the drug treatment of osteoporosis.
Collapse
Affiliation(s)
- Siming Zhou
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengbo Tao
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhu
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Tao
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, Wang S, Xu J, Lin D. Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Front Pharmacol 2019; 10:1344. [PMID: 31824310 PMCID: PMC6886594 DOI: 10.3389/fphar.2019.01344] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a bone disease characterized by increasing osseous fragility and fracture due to the reduced bone mass and microstructural degradation. Primary pharmacological strategies for the treatment of osteoporosis, hormone replacement treatment (HRT), and alendronate therapies may produce adverse side-effects and may not be recommended for long-term usage. Some classic and bone-specific natural Chinese medicine are very popularly used to treat osteoporosis and bone fracture effectively in clinical with their potential value in bone growth and development, but with few adverse side-effects. Current evidence suggests that the treatments appear to improve bone metabolism and attenuate the osteoporotic imbalance between bone formation and bone resorption at a cellular level by promoting osteoblast activity and inhibiting the effects of osteoclasts. The valuable therapies might, therefore, provide an effective and safer alternative to primary pharmacological strategies. Therefore, the purpose of this article is to comprehensively review these classic and bone-specific drugs in natural Chinese medicines for the treatment of osteoporosis that had been deeply and definitely studied and reported with both bone formation and antiresorption effects, including Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (syn. Morinda officinalis F.C.How), Curculigo orchioides Gaertn., Psoralea corylifolia (L.) Medik Eucommia ulmoides Oliv., Dipsacus inermis Wall. (syn. Dipsacus asperoides C.Y.Cheng & T.M.Ai), Cibotium barometz (L.) J. Sm., Velvet Antler, Cistanche deserticola Ma, Cuscuta chinensis Lam., Cnidium monnieri (L.) Cusson, Epimedium brevicornum Maxim, Pueraria montana (Lour.) Merr. and Salvia miltiorrhiza Bunge., thus providing evidence for the potential use of alternative Chinese medicine therapies to effectively treat osteoporosis.
Collapse
Affiliation(s)
- Jianbo He
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ziyi Wang
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Samuel Bennett
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junhao Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Kim DE, Kim JK, Han SK, Jang SE, Han MJ, Kim DH. Lactobacillus plantarum NK3 and Bifidobacterium longum NK49 Alleviate Bacterial Vaginosis and Osteoporosis in Mice by Suppressing NF-κB-Linked TNF-α Expression. J Med Food 2019; 22:1022-1031. [DOI: 10.1089/jmf.2019.4419] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Da-Eun Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Sang-Kap Han
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Se-Eun Jang
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
- Department of Food and Nutrition, Eulji University, Seongnam-shi, Gyeonggi-do, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
10
|
Liu L, Li P, Qiao L, Li X. Effects of astragaloside IV on the pharmacokinetics of puerarin in rats. Xenobiotica 2019; 49:1173-1177. [PMID: 29790819 DOI: 10.1080/00498254.2018.1480819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People’s Hospital of Shanghai University of TCM, Shanghai, China
| | - Pihong Li
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lujun Qiao
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People’s Hospital of Shanghai University of TCM, Shanghai, China
| |
Collapse
|
11
|
Zhou Y, Song X, Dong G. Effects of verapamil on the pharmacokinetics of puerarin in rats. Xenobiotica 2019; 49:1178-1182. [PMID: 30173622 DOI: 10.1080/00498254.2018.1518552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yun Zhou
- Department of Pharmacy, Yidu Central Hospital of Weifang, Shandong, China
| | - Xiaoli Song
- Department of Pharmacy, Yidu Central Hospital of Weifang, Shandong, China
| | - Gang Dong
- Department of Pharmacy, Yidu Central Hospital of Weifang, Shandong, China
| |
Collapse
|
12
|
Zeng X, Feng Q, Zhao F, Sun C, Zhou T, Yang J, Zhan X. Puerarin inhibits TRPM3/miR-204 to promote MC3T3-E1 cells proliferation, differentiation and mineralization. Phytother Res 2018; 32:996-1003. [DOI: 10.1002/ptr.6034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangwei Zeng
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Qian Feng
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Fengming Zhao
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Chao Sun
- The First Clinical Medical School; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Tao Zhou
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Jing Yang
- The First Clinical Medical School; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Xiuqin Zhan
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| |
Collapse
|
13
|
Türer ÇC, Türer A, Durmuşlar MC, Önger ME. The Local Effect of Puerarin on Critical-Sized Calvarial Defects. J Craniofac Surg 2016; 28:143-146. [PMID: 27922959 DOI: 10.1097/scs.0000000000003271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pueraria, the root of Pueraria lobata, is a commonly used herb in alternative medicine. This study evaluates the effect of puerarin and autogenous graft material combination on bone regeneration in calvarial critical-sized bone defects. Twenty-four rats were randomly divided into 3 groups of 8 rats each. A 5-mm diameter critical-sized defect was created in the calvarium of each animal. In group C, defects were left unfilled and were allowed to heal spontaneously without the use of any grafting material. Critical-sized bone defect created in animals receiving no treatment. In group ABG, defects were filled with autologous bone graft only. In group P-ABG, defects were filled with autologous bone graft and puerarin combination. All animals were euthanized at 28 days postoperative. Stereologic analyses were performed. New bone area and connective tissue volumes were measured. Stereologic analysis showed that the difference between grafted groups (P-ABG and ABG) and group C was statistically significant with a mean bone formation of 1.13 ± 0.09, 1.11 ± 0.11, and 0.31 ± 0.09 mm respectively (P ≤0.05). The connective tissue volumes were also statistically higher in groups P-ABG and ABG (P ≤0.05). Puerarin has positive effect on new bone formation in autogenous grafted critical-sized bone defects.
Collapse
Affiliation(s)
- Çiğdem Coşkun Türer
- *Department of Periodontology †Department of Oral and Maxillofacial Surgery, Bülent Ecevit University, Zonguldak ‡Department of Histology and Embriology, Ondokuzmayis University, Samsun, Turkey
| | | | | | | |
Collapse
|
14
|
Zhou QL, Qin RZ, Yang YX, Huang KB, Yang XW. Polydatin possesses notable anti‑osteoporotic activity via regulation of OPG, RANKL and β‑catenin. Mol Med Rep 2016; 14:1865-9. [PMID: 27357904 DOI: 10.3892/mmr.2016.5432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
Abstract
This study was designed to investigate the anti‑osteoporotic activity of polydatin and its possible underlying mechanism. Osteoporosis was induced in mice by ovariectomy (OVX) and the mice were divided into 5 groups: An OVX only group, polydatin groups (10, 20 and 40 mg/kg) and a sham group (n=10/group). After 12 weeks of treatment, body weight, uterine index and the dry weight of thigh‑bones were recorded. In addition, the serum calcium, serum phosphorus, alkaline phosphatase (ALP) and osteoprotegerin (OPG) levels were also determined. Western blot analysis was then conducted to investigate the possible mechanism underlying the effect of polydatin via determining the expression of OPG, receptor activators of nuclear factor‑κB ligand (RANKL) and β‑catenin in the ST2 cell line. The results indicated that intraperitoneal injection of polydatin (10, 20 and 40 mg/kg/day) decreased body weight, and increased uterine index and dry weights of thigh‑bones of ovariectomized mice (P<0.05), and polydatin also significantly increased the serum calcium, phosphorus, ALP and OPG of ovariectomized mice (P<0.05). Results of western blot analysis showed that polydatin upregulated the ratio of OPG/RANKL (P<0.05) and β‑catenin protein in ST2 cells. In conclusion, the results demonstrated that polydatin exhibits anti‑osteoporotic activity via regulating osteoprotegerin, RANKL and β‑catenin.
Collapse
Affiliation(s)
- Qi-Lin Zhou
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Ru-Zi Qin
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Yan-Xin Yang
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Kun-Bing Huang
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Xian-Wen Yang
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| |
Collapse
|
15
|
Zhang Z, Zhang Q, Yang H, Liu W, Zhang N, Qin L, Xin H. Monotropein isolated from the roots of Morinda officinalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice. Fitoterapia 2016; 110:166-72. [DOI: 10.1016/j.fitote.2016.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022]
|
16
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
17
|
Zhang Y, Yan M, Yu QF, Yang PF, Zhang HD, Sun YH, Zhang ZF, Gao YF. Puerarin Prevents LPS-Induced Osteoclast Formation and Bone Loss via Inhibition of Akt Activation. Biol Pharm Bull 2016; 39:2028-2035. [DOI: 10.1248/bpb.b16-00522] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University
| | - Ming Yan
- Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University
| | | | | | | | - Yong-hong Sun
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University
| | | | | |
Collapse
|