1
|
Study on the Mechanism of Üstikuddus Sherbiti in Ischemic Cerebrovascular Diseases: Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5581864. [PMID: 35432563 PMCID: PMC9012636 DOI: 10.1155/2022/5581864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
This paper aims to study the potential biological mechanism of Üstikuddus Sherbiti (ÜS) in the treatment of ischemic cerebrovascular diseases (ICVD) by the network pharmacology method. Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to obtain effective constituents of ÜS by screening eligible oral utilization, drug similarity, and blood-brain barrier permeability threshold. By drug target prediction and stroke treatment target mining, 2 target data sets were analyzed to find intersection targets and the corresponding constituents were used as active constituents. An active constituent target network and an effective constituent target network were constructed by using Cytoscape 3.7.2 software. Degree parameters of the effective constituent target network were analyzed to find important effective constituents and targets. Through protein-protein interaction (PPI) analysis/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, potential signaling pathways of ÜS in ischemic stroke were found out. AutoDock was used for molecular docking verification. A total of 90 active constituents of ÜS were screened out. There were 10 active constituents against ICVD, including quercetin, luteolin, kaempferol, and naringenin, and 10 important targets for anticerebral ischemia, namely, PIK3CA, APP, PIK3R1, MAPK1, MAPK3, AKT1, PRKCD, Fyn, RAC1, and NF-κB1. Based on the protein interaction network, the important targets of ÜS were significantly enriched in PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction pathway, Ras signaling pathway, etc. ÜS in ICVD has characteristics like multiple targets, multiple approaches, and multiple pathways. Results of molecular docking showed that the active components in ICVD had a good binding ability with the key targets. Its main biological mechanism may be related to the PI3K-Akt and Ras-MAPK centered signaling pathway. Our study demonstrated that ÜS exerted the effect of treating ICVD by regulating multiple targets and multiple channels with multiple components through the method of network pharmacology and molecular docking.
Collapse
|
2
|
Zhou SS, Jiang JG. Anti-fatigue Effects of Active Ingredients from Traditional Chinese Medicine: A Review. Curr Med Chem 2019; 26:1833-1848. [DOI: 10.2174/0929867324666170414164607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 01/17/2023]
Abstract
Background:
The application of traditional Chinese medicine (TCM) in the
treatment of fatigue has long been practiced in clinical and showed significant effects.
Objective:
This article summarizes the work done on the natural products from TCM that
are reported to have effects of treating fatigue, in the past two decades.
Method:
Research status, sources, models, efficacy and mechanisms of active ingredients
and their monomer in the treatment of fatigue are discussed.
Results:
Pharmacological research shows that active ingredients of polysaccharide can significantly
improve body’s resistance through promoting glycogen synthesis, reducing sports
metabolites and increasing hypoxia tolerance; Alkaloids have been proven to be effective in
promoting the reserving of various glucogen substances, improving exercise endurance and
speeding up the metabolism of body’s urea nitrogen in mice; With the increase of glycosides
amount, up goes the sport endurance, liver glycogen content and the ability of clear lactate
index in mice, indicating that saponin has clear, dose-dependent anti-fatigue effect; Polyphenols
have also functions of resisting fatigue, where they reduce free radicals accumulated
and thus slow down the rapid declination of exercise capacity when doing sports; There are
other active ingredients of TCM that have biological activities, like some proteins, anthraquinones,
terpenes, unsaturated fatty acid monomer compounds; And research has found
that tonic medicine can promote the elimination of fatigue and improve athletic ability.
Conclusion:
It is hoped that the data summarized in this review will be beneficial to the
screening of new nature-derived drugs with the ability of relieving and improving fatigue.
Collapse
Affiliation(s)
- Si-Si Zhou
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Xu XN, Chen LY, Chen C, Tang YJ, Bai FW, Su C, Zhao XQ. Genome Mining of the Marine Actinomycete Streptomyces sp. DUT11 and Discovery of Tunicamycins as Anti-complement Agents. Front Microbiol 2018; 9:1318. [PMID: 29973921 PMCID: PMC6019454 DOI: 10.3389/fmicb.2018.01318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Marine actinobacteria are potential producers of various secondary metabolites with diverse bioactivities. Among various bioactive compounds, anti-complement agents have received great interest for drug discovery to treat numerous diseases caused by inappropriate activation of the human complement system. However, marine streptomycetes producing anti-complement agents are still poorly explored. In this study, a marine-derived strain Streptomyces sp. DUT11 showing superior anti-complement activity was focused, and its genome sequence was analyzed. Gene clusters showing high similarities to that of tunicamycin and nonactin were identified, and their corresponding metabolites were also detected. Subsequently, tunicamycin I, V, and VII were isolated from Streptomyces sp. DUT11. Anti-complement assay showed that tunicamycin I, V, VII inhibited complement activation through the classic pathway, whereas no anti-complement activity of nonactin was detected. This is the first time that tunicamycins are reported to have such activity. In addition, genome analysis indicates that Streptomyces sp. DUT11 has the potential to produce novel lassopeptides and lantibiotics. These results suggest that marine Streptomyces are rich sources of anti-complement agents for drug discovery.
Collapse
Affiliation(s)
- Xiao-Na Xu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Liang-Yu Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering, Ministry of Education – Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Preliminary Characterization of a Homogeneous Polysaccharide with Anticomplement Activity from Sijunzi Decoction. J CHEM-NY 2018. [DOI: 10.1155/2018/8642653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sijunzi decoction (SJZD) is a classical herbal prescription in traditional Chinese medicine (TCM) used for enhancing the function of immune system. In previous studies, a polysaccharide fraction S-3 was screened from SJZD by assessment of immune system regulation, intestinal microbiota, and SCFA in order to explore the immune active ingredients in SJZD. In the present study, S-3 was further purified, and a homogeneous polysaccharide S-3-1 with a molecular mass of 13.5 × 104 Da was obtained after further fractionation by Sephadex G-150 size-exclusion chromatography. The immunological activities of S-3-1 were assayed in vitro for the first time. The determination of the anticomplement activity showed that S-3-1 displayed inhibitory effects on classical pathway of the complement system, with CH50 values of 530 μg/mL. The FT-IR analysis showed that S-3-1 had absorptive peaks characteristic of polysaccharides. The methylation and GC-MS analysis showed that it is comprised of Rha, Ara, Xyl, Man, Gal, and Glc in a relative molar ratio of 0.35 : 0.37 : 1.4 : 0.31 : 3 : 0.8 and that it mainly contained 1,4-linked-Glc and 1,6-linked-Gal glycosidic bonds. The morphology of S-3-1 was observed by atomic force microscope (AFM). These results provided evidences for tracking the material basis of SJZD immune activity.
Collapse
|
5
|
Ho GTT, Wangensteen H, Barsett H. Elderberry and Elderflower Extracts, Phenolic Compounds, and Metabolites and Their Effect on Complement, RAW 264.7 Macrophages and Dendritic Cells. Int J Mol Sci 2017; 18:ijms18030584. [PMID: 28282861 PMCID: PMC5372600 DOI: 10.3390/ijms18030584] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022] Open
Abstract
Modulation of complement activity and inhibition of nitric oxide (NO) production by macrophages and dendritic cells may have therapeutic value in inflammatory diseases. Elderberry and elderflower extracts, constituents, and metabolites were investigated for their effects on the complement system, and on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages and murine dendritic D2SC/I cells. The EtOH crude extracts from elderberry and elderflower and the isolated anthocyanins and procyanidins possessed strong complement fixating activity and strong inhibitory activity on NO production in RAW cells and dendritic cells. Phenolic compounds in the range of 0.1–100 µM showed a dose-dependent inhibition of NO production, with quercetin, rutin, and kaempferol as the most potent ones. Among the metabolites, caffeic acid and 3,4-dihydroxyphenylacetic acid showed the strongest inhibitory effects on NO production in both cell lines, without having cytotoxic effect. Only 4-methylcatechol was cytotoxic at the highest tested concentration (100 µM). Elderberry and elderflower constituents may possess inflammatory modulating activity, which increases their nutritional value.
Collapse
Affiliation(s)
- Giang Thanh Thi Ho
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | - Helle Wangensteen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | - Hilde Barsett
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
6
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2016; 13:730-42. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|
7
|
Jiang B, Liu F, Liu Z, Zhang T, Hua D. B7-H3 increases thymidylate synthase expression via the PI3k-Akt pathway. Tumour Biol 2016; 37:9465-72. [PMID: 26787540 DOI: 10.1007/s13277-015-4740-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/22/2015] [Indexed: 01/05/2023] Open
Abstract
B7-H3, a member of the B7 family, has been reported to be highly expressed in colorectal cancer and is associated with poor prognosis and overall survival. In this study, we found that overexpression of B7-H3 protected SW80 and HCT8 cells from 5-fluorouracil (5-FU) using CCK-8 assays by inducing resistance to 5-FU chemotherapy. Further investigation has revealed elevated expression of thymidylate synthase (TS) and upregulation of the PI3-kinase (PI3K)/Akt pathway in B7-H3 overexpressing cells. The effects of B7-H3 on activation of the PI3K/Akt pathway and elevation of TS expression could be blocked by LY294002, a specific inhibitor of the PI3K signaling pathway. These results implied that B7-H3 can induce colorectal cancer cell resistance to 5-FU by increasing TS expression and PI3K/Akt/TS signaling and plays an important role during these processes. This study provides more proof concerning the non-immunology effect of B7 molecules, a reminder that both co-stimulatory or inhibitory effects and non-immunology effects should be devoted equal attention.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Fen Liu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - ZhiHui Liu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| |
Collapse
|